• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 11
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Conduite orientée ordonnancement d'un simulateur dynamique hybride : application aux procédés discontinus / Control oriented scheduling of a dynamic hybrid simulator : application to batch processes

Fabre, Florian 20 October 2009 (has links)
Ce manuscrit présente des travaux visant à intégrer un module d'ordonnancement (ProSched) à l'environnement de modélisation et simulation dynamique hybride PrODHyS dans le but d'automatiser la génération de scénarii de simulation de procédés discontinus sur la base d'une recette et d'une liste d'ordres de fabrication (OF). La méthodologie développée repose sur une approche mixte optimisation/simulation. Dans ce cadre, trois points essentiels ont été développés dans ces travaux : - tout d'abord, concevoir et développer des composants réutilisables (classes de recette) permettant de modéliser de manière hiérarchisée et systématique le déroulement des opérations unitaires. Pour cela, les notions de jeton Task et de macro-place paramétrable ont été introduites dans les RdPDO et permettent de décrire les recettes à réaliser par assemblage de ces composants prédéfinis. - ensuite, définir un modèle mathématique générique d'ordonnancement basé sur un formalisme de représentation bien établi (le R.T.N.) qui permet de modéliser les principales caractéristiques d'un procédé discontinu et de fournir l'ensemble des données d'entrée nécessaires au modèle de simulation. Pour cela, un modèle PLNE basé sur la formulation Unit Specific Event a été mis en œuvre. - enfin, définir l'interface existant entre le modèle d'optimisation et le modèle de simulation, à travers la notion de place de pilotage et de centre de décision au niveau du simulateur. Dans ce cadre, différentes stratégies de couplage sont proposées. Les potentialités de cette approche sont illustrées par la simulation d'un procédé complet. / This thesis presents works which aim to incorporate a scheduling module (ProSched) to an environment for modeling and dynamic hybrid simulation PrODHyS in order to automate the generation of scenarios for simulation of batch processes based on a recipe and a list of production orders (OF). The methodology developed is based on a mixed optimization / simulation approach. In this context, three key points have been developed in this work: - First, design and develop reusable components (recipe classes) for the hierarchical and systematic modeling of the sequencing of unit operations. For this, the notions of Task token and macro-place have been introduced in the RdPDO formalism and allow the modeling of recipes by assembling these predefined components. - Secondly, define a generic mathematical model of scheduling based on a well defined graphical formalism (RTN) that models the main characteristics of batch processes and provide all input data necessary to the simulation model. For this, a MILP model based on the Unit Specific Event formulation has been implemented. - Finally, define the interface between the optimization model and the simulation model through the concept of control place and decision-making center at the simulator level. In this context, various strategies of mixing optimization and simulation are proposed. The potential of this approach is illustrated by the simulation of a complete manufacturing process
32

Hybrid and data-driven methods for efficient and realistic particle-based liquid simulations

Roy, Bruno 12 1900 (has links)
L’approximation de phénomènes physiques, tels qu’une simulation de liquides en informatique graphique, requiert l’utilisation de méthodes complexes nécessitant des temps de calcul et une quantité de mémoire importants. Malgré les avancées récentes dans ce domaine, l’écart en réalisme entre un liquide simulé et la réalité demeure encore aujourd’hui considérable. Cet écart nous séparant du réalisme souhaité nécessite des modèles numériques de simulation dont la complexité ne cesse de croître. L’objectif ultime est de permettre à l’utilisateur de manipuler ces modèles de simulation de liquides sans la nécessité d’avoir une connaissance accrue de la physique requise pour atteindre un niveau de réalisme acceptable et ce, en temps réel. Plusieurs approches ont été revisitées dans les dernières années afin de simplifier ces modèles ou dans le but de les rendre plus facilement paramétrables. Cette thèse par articles encadre bien les trois projets constituant nos contributions dans le but d’améliorer et de faciliter la génération de simulations de liquides en informatique graphique. Tout d’abord, nous introduisons une approche hybride permettant de traiter séparément le volume de liquide non-apparent (i.e., en profondeur) et une couche de particules en surface par la méthode de calcul Smoothed Particle Hydrodynamics (SPH). Nous revisitons l’approche par bandes de particules, mais cette fois nouvellement appliquée à la méthode SPH qui offre un niveau de réalisme supérieur. Comme deuxième projet, nous proposons une approche permettant d’améliorer le niveau de détail des éclaboussures de liquides. En suréchantillonnant une simulation de liquides existante, notre approche est capable de générer des détails réalistes d’éclaboussures grâce à la dynamique de balistique. En complément, nous proposons une méthode de simulation par vagues permettant de reproduire les interactions entre les éclaboussures générées et les portions quasi-statiques de la simulation existante. Finalement, le troisième projet introduit une approche permettant de rehausser la résolution apparente d’un liquide par l’apprentissage automatique. Nous proposons une architecture d’apprentissage inspirée des flux optiques dont l’objectif est de générer une correspondance entre le déplacement des particules de simulations de liquides à différentes résolutions (i.e., basses et hautes résolutions). Notre modèle d’apprentissage permet d’encoder des caractéristiques de hautes résolutions à l’aide de déformations pré-calculées entre deux liquides à différentes résolutions et d’opérations de convolution basées sur le voisinage des particules. / The approximation of natural phenomena such as liquid simulations in computer graphics requires complex methods that are computationally expensive. Despite recent advances in this field, the gap in realism between a simulated liquid and reality remains considerable. This disparity that separates us from the desired realism requires numerical models whose complexity continues to grow. The ultimate goal is to provide users the capacity and tools to manipulate these liquid simulation models to obtain acceptable realism. In the last decade, several approaches have been revisited to simplify and to allow more flexible models. In this dissertation by articles, we present three projects whose contributions support the improvement and flexibility of generating liquid simulations for computer graphics. First, we introduce a hybrid approach allowing us to separately process the volume of non-apparent liquid (i.e., in-depth) and a band of surface particles using the Smoothed Particle Hydrodynamics (SPH) method. We revisit the particle band approach, but this time newly applied to the SPH method, which offers a higher level of realism. Then, as a second project, we propose an approach to improve the level of detail of splashing liquids. By upsampling an existing liquid simulation, our approach is capable of generating realistic splash details through ballistic dynamics. In addition, we propose a wave simulation method to reproduce the interactions between the generated splashes and the quasi-static portions of the existing liquid simulation. Finally, the third project introduces an approach to enhance the apparent resolution of liquids through machine learning. We propose a learning architecture inspired by optical flows by which we generate a correspondence between the displacement of the particles of liquid simulations at different resolutions (i.e., low and high resolutions). Our training model allows high-resolution features to be encoded using pre-computed deformations between two liquids at different resolutions and convolution operations based on the neighborhood of the particles.

Page generated in 0.1138 seconds