121 |
Development Of Hydraulic And Soil Properties For Soil Amendments And Native Soils For Retention Ponds In Marion County, FloridaNaujock, Lisa 01 January 2008 (has links)
The vadose zone plays an important role in managing stormwater. Predicting the water balance and water movement is crucial in ground water remediation to keep water suitable for use. To aid in understanding soils ability to transmit and store water, soil and hydraulic properties were analyzed for soils in Marion County, Florida, and potential soil amendments. Soil and hydraulic properties were examined for two soil amendments and for the soils in Marion County, Florida, at the South Oak and the Hunter's Trace locations. The hydraulic properties measured were the soil moisture retention curve (SMRC) and saturated hydraulic conductivity (Ks). The soil properties measured were the particle-size distribution (PSD) and the specific gravity. From these, the bulk density and porosity were calculated. The SMRC corresponds to the water holding capacities, while the Ks corresponds to the soils ability to transmit water. Both are dependent on the soil properties. The SMRC for the soil amendments and native soils were developed in the laboratory using a Tempe Cell apparatus. In addition, the SMRC was measured in the field at the Hunter's Trace location with time domain reflectometry (TDR) and tensiometer equipment at three depths of 1-ft, 2-ft, and 3-ft over approximate a two month period. The SMRC obtained in the laboratory was compared to two analytical models, Brooks and Corey and van Genuchten, and to the field data. There is a strong correlation between the laboratory, analytical, and field SMRC for both South Oak and Hunter's Trace. In addition, there is a strong correlation between the laboratory SMRC and analytical models for the soil amendments. The Arya and Paris (AP) model, a pedotransfer function, was examined for its accuracy in predicting the SMRC for the soils at South Oak and Hunter's Trace, in addition to the soil amendments. Measuring the SMRC in the lab is a time consuming process; therefore, inferring the SMRC from textural and structural soil properties which are easier measured characteristics would be advantageous.
|
122 |
Field Based Study of Gravel LiquefactionRoy, Jashod 04 August 2022 (has links) (PDF)
Characterization and assessment of liquefaction potential of gravelly soil in a reliable cost-effective manner has always been a great challenge for the geotechnical engineers. The typical laboratory investigation techniques have proven to be ineffective for characterizing gravelly soil due to the cost and difficulty of extracting undisturbed sample from gravelly deposits. The traditional in-situ tests like SPT or CPT are not very suitable for gravelly soil because of interference with large size gravel particles which can artificially increase the penetration resistance. The Becker Penetration Test, well known for gravelly soil characterization, is cost-prohibitive for routine projects and is not available in most of the world. The Chinese dynamic cone penetration test (DPT) with a larger diameter probe compared to the SPT or CPT, can be economically performed with conventional drilling equipment. Besides the penetration testing, in-situ measurement of shear wave velocity (Vs) is another alternative of characterizing gravel liquefaction. Probabilistic liquefaction triggering curves were developed by performing both DPT and shear wave velocity test at the Chengdu Plain of China where massive gravel liquefaction took place during 2008 Wenchuan earthquake. These curves have significant uncertainty as they were developed from a single event database. As a part of this study, both DPT and Vs tests have been performed at various sites around the world where gravelly soil did or did not liquefy in various past earthquakes. These newly collected data have been added to the existing Chinese dataset to form a large database on gravel liquefaction case histories for both DPT and Vs. Based on this larger database, new magnitude dependent probabilistic liquefaction triggering procedures have been developed for both DPT and Vs. The larger database has significantly improved the triggering curves by reducing the spread and constraining the curves at both the higher and lower end. New Magnitude Scaling Factor (MSF) curves have been developed for both DPT and Vs which were found to be consistent with existing MSF curves. Further, an instructive comparison has been drawn between the performance of CPT and newly developed DPT triggering procedure the liquefaction potential of gravelly deposits CentrePort in Wellington. Results showed that both DPT and CPT performed reasonably well in liquefaction assessment of the gravelly fill. However, the CPT-based CRR profiles contain intermittent spikes due to the interaction with gravel particles whereas the DPT resistance appear to be relatively smooth. Similar comparison has been presented between the DPT and BPT in performing liquefaction assessment of gravelly soil at the Borah Peak sites in Idaho. It is found that both DPT and BPT successfully evaluate the liquefaction potential of the loose critical layers but the medium dense to dense layers are identified as non-liquefiable by the DPT whereas the same deposits are identified as liquefiable by the BPT. Lastly, an investigation has been carried out to observe the effect of hydraulic conductivity and in-situ drainage on the liquefaction triggering in gravelly soils based on field data along with a group of numerical analyses. It is found that the hydraulic conductivity of gravelly soil reduces with sand content which eventually may cause liquefaction during earthquake shaking. Low permeability cap layer may also impede the drainage path to generate excess pore pressure to trigger liquefaction in the gravelly strata.
|
123 |
Measurement of the Hydraulic Conductivity of Gravels Using a Laboratory Permeameter and Silty Sands Using Field Testing with Observation WellsJudge, Aaron 01 May 2013 (has links)
A new laboratory permeameter was developed for measuring the hydraulic conductivity of gravels ranging from 0.1 to 2 m/s. The release of pneumatic pressure applied to the test specimen induces an underdamped oscillatory response of the water level above the permeameter, similar to an underdamped in situ slug test response in monitoring wells. A closed form model was derived to calibrate the hydraulic minor losses in the permeameter and the hydraulic conductivity of the specimen by performing tests without and with a specimen. The majority of each test series performed on individual specimens produced hydraulic conductivity values within 10% of the average, which is very small for such a measurement.
Tests were performed using the permeameter on a collection of subrounded and angular gravels prepared to measured grain size distributions and porosities. The surface area was determined by evaluating the shape and angularity using a method developed in this research and these parameters were used with the measured tortuosity and hydraulic conductivity, to back calculate the packing factor of the Kozeny-Carman equation. The results show that the packing factor for the gravels and materials tested is proportional to the tortuosity cubed. These results provide a valuable update to the Kozeny-Carman equation for predicting the hydraulic conductivity of gravels.
Field slug interference tests were performed in pairs of monitoring wells installed at the same elevation in a floodplain deposit of silty sand in Dedham MA. Slug tests were performed in one of the wells while the response was monitored simultaneously in both wells. The measured responses were both analyzed by modifying the KGS model of Hyder et al. (1994) to consider the wellbore storage and filter packs effects. This modification was found to produce estimates of hydraulic conductivity based on the slugged well response that compared well with that estimated based on the observation well's response. Calibrated hydraulic conductivities for the pairs of wells tested ranged from 4x10-6 to 1.5x10-5 m/s and specific storage ranged from 2x10-5 to 7x10-4 m-1.
|
124 |
Effect of Superplasticizer on the Performance Properties of Cemented Paste Backfill at Different Curing TemperaturesHaruna, Sada 28 October 2022 (has links)
Cemented paste backfill (CPB) technology is widely used in the mining industry as an effective means of tailings disposal. CPB is a mixture of tailings, binder, water, and additional admixtures when required. It is prepared in a mixing plant on the ground surface and then transported into the mine cavities through pipelines either by gravity and/or using pumps. To ensure efficiency during transportation and avoid pipe clogging (which can cause unnecessary delays and loss of productivity), fresh CPB must have sufficient flowability. To achieve that, high-range water reducing admixtures, also known as superplasticizers, are usually added to the CPB during mixing. These admixtures are widely used in the construction industry due to their ability to improve flowability without undermining other important engineering properties. However, their influence on the rheology, mechanical strength and environmental performance (reactivity and permeability) of CPB is not fully understood. Thus, experimental studies were conducted to investigate the effects of superplasticizers on the performance properties of cemented paste backfill at different curing temperatures.
Yield stress and viscosity of fresh CPB cured for 0, 1, 2, and 4 hours were measured using a vane shear device and a Brookfield Viscometer respectively. Unconfined compressive strength (UCS) of samples cured for 1, 3, 7, and 28 days was determined in accordance with ASTM - C39. Superplasticizer contents were varied as 0%, 0.125%, and 0.25% of the total weight of the CPB. Preparations and curing of the specimens were performed at controlled conditions of 2, 20, and 35 °C to investigate the effect of ambient or curing temperatures. To have a better understanding of the environmental performance of CPB containing superplasticizer, reactivity, and hydraulic conductivity up to 90 days of curing were also investigated. The reactivity was measured using oxygen consumption test while hydraulic conductivity was measured using flexible wall permeability test. Microstructural analyses (thermogravimetric analyses, X-Ray diffraction, and mercury intrusion porosimetry) and monitoring tests (pH, zeta potential, electrical conductivity, and matric suction) were carried out to understand the principles behind the changes of the observed properties. The obtained results show that superplasticizer dosage and temperature variation have significant effects on the rheology, strength development, hydraulic conductivity and reactivity of the CPB. The polycarboxylic ether-based superplasticizer significantly reduces the yield stress and viscosity by creating strong electrostatic repulsion between the solid particles in the CPB and by steric hinderance. The CPB containing the superplasticizer remains fluid for longer period (as compared with the CPB without superplasticizer) due to the retardation of binder hydration. However, high curing temperature induces faster cement hydration, which thickens the fresh CPB. The unconfined compressive strength (UCS) of the CPB containing superplasticizer was observed to be lower in the early age (up to 7 days), which is also attributed to retardation of the binder hydration. At later ages, the superplasticizer improves the mechanical strength as the binder hydration accelerates and the solid particles self-consolidate. Coupled THMC processes in the CPB showed the role played by the changes in electrical conductivity, volumetric water content, matric suction, and temperature on the development of mechanical strength of the CPB containing superplasticizer. Similarly, addition of the superplasticizer in the CPB decreases both the hydraulic conductivity and reactivity of CPB, thus improving its environmental performance. The improvement is largely attributed to enhanced binder hydration and self-consolidation which decrease the porosity of the CPB. Increasing the curing temperature was found to magnify the improvement of the CPB properties by inducing faster binder hydration. The findings from this study will undoubtedly inform the design of CPB structure with better mechanical stability and environmental performance.
|
125 |
INTERPRETATION OF DOMESTIC WATER WELL PRODUCTION DATA AS A TOOL FOR DETECTION OF TRANSMISSIVE BEDROCK FRACTURED ZONES UNDER COVER OF THE GLACIAL FORMATIONS IN GEAUGA COUNTY, OHIOMaharjan, Madan 18 July 2011 (has links)
No description available.
|
126 |
TEMPORAL VARIABILITY OF RIVERBED HYDRAULIC CONDUCTIVITY AT AN INDUCED INFILTRATION SITE, SOUTHWEST OHIOBirck, Matthew D. 04 August 2006 (has links)
No description available.
|
127 |
Investigating Riverbed Hydraulic Conductivity at Several Well Fields Along the Great Miami River, Southwest OhioWojnar, Alicja Jolanta 12 August 2008 (has links)
No description available.
|
128 |
The Impact of SMCRA on Select Soil Properties in Reclaimed Mine Sites Determined by Geochemical and Hydrological AnalysesHolsinger, John Frederick 29 October 2014 (has links)
No description available.
|
129 |
Multiscale Hyporheic Exchange Through Strongly Heterogeneous SedimentsPryshlak, Timothy Theodozij 20 May 2015 (has links)
No description available.
|
130 |
Applicability of Soil Moisture Sensors in Determination of Infiltration RateK C, Milan January 2017 (has links)
No description available.
|
Page generated in 0.0865 seconds