• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 291
  • 58
  • 47
  • 25
  • 12
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 597
  • 129
  • 108
  • 92
  • 70
  • 70
  • 48
  • 45
  • 44
  • 41
  • 37
  • 36
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The biological effects of polycyclic aromatic hydrocarbons in the Scottish marine environment

Richardson, Daniel M. January 2002 (has links)
No description available.
72

Radiation model for buoyant flames

Cordero, J. S. January 1993 (has links)
No description available.
73

An investigation of the potential for the bio-degradation of motor oil within a model permeable pavement structure

Brownstein, Jonathan B. January 1998 (has links)
No description available.
74

Sustainable treatment of hydrocarbon-contaminated industrial land

Cunningham, Colin John January 2012 (has links)
Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. Sustainable treatment of hydrocarbon-contaminated industrial land was considered with reference to seven published works on contaminated railway land including the track ballast, crude oil wastes and contaminated refinery soils. A methodology was developed to assess the level hydrocarbon contamination of track ballast (Anderson et al., 2000) and in Anderson et al. (2002, 2003) solvent and surfactant cleaning of ballast was investigated and potential environmental impacts of the processes examined. Optimisation of ex situ bioremediation of diesel-contaminated soil (Cunningham & Philp, 2000) demonstrated the efficacy of the addition of microorganisms (bioaugmentation) to enhance diesel biodegradation rates at field pilot scale. This work motivated a further study that examined a novel aeration approach incorporating ventilator turbines (cowls) for soil biopiles (Li et al., 2004). An optimised ex situ bioremediation for crude oil wastes was developed in Kuyukina et al. (2003) which demonstrated the efficacy of bioaugmentation and the application of biosurfactants. The final study investigated the potential application of biosurfactants to in situ remediation (Kuyukina et al., 2005) in laboratory soil columns contaminated with crude oil. The collected works are informative to those seeking to remediate hydrocarbon-contaminated industrial land and the sustainability of the approaches was considered.
75

The In Vitro Interaction of 3-Methylcholanthrene with Deoxyribonucleic Acid

Chapel, J. Frederick 08 1900 (has links)
The purpose of this thesis is to report the interaction of aromatic hydrocarbons with DNA and to attempt to determine the relative binding affinities. The effect of the hydrocarbons on the continuity of the DNA molecule has been studied also and discussed.
76

Microbial Utilization of a Certain Hydrocarbon Insecticide

Dorman, Homer L. 08 1900 (has links)
This problem includes, first, the isolation and identification of microorganisms which utilized the hydrocarbon insecticide as a sole source of carbon and energy; second, a determination of the effect on plants sprayed with the hydrocarbon medium as compared with the effect on plants sprayed with the hydrocarbon medium containing a good growth of hydrocarbon-utilizers; and third, a determination of the ability of laboratory stock cultures of organisms to utilize or remain alive in the hydrocarbon medium.
77

Low frequency seismic signals lead to hydrocarbon indication and monitoring tool

Alsalim, Mohammed Saad January 1900 (has links)
Master of Science / Department of Geology / Abdelmoneam Raef / Recently, South Rub’ al-Khali Company Limited (SRAK) acquired a preliminary survey in the Saudi’s oil producing area to develop a feasible new hydrocarbon indication and monitoring (I & M) device using low frequency seismic signals. Based on broadband seismometer data, the new Hydrocarbon I & M might predict the possibility of a hydrocarbon basin underneath by way of evaluating the received spectra for an additional energy shell between 2.0-6.0 Hz. Such a study is also referred to as hydrocarbon microtremor analysis and recently some contracting geophysical service companies offer such studies. This report will concentrate on the hydrocarbon microtremor analysis of synchronized signal of one frequency and an extra re-determination possibly at a separate location. The paper reports on several critical likely misconceptions and examines repeatability of hydrocarbon microtremors. This work indicates that signal generated by manmade operations can yield same tremor as that assumed for hydrocarbon reservoirs. Equally important, the presence of surface waves generated by anthropogenic signal indicates frequency limits ranging from 1 to 10 Hertz as a result of isolated surface waves. The difficulty of isolating any presumed hydrocarbon related tremors from ambient noise hamper efforts of understanding and applying microseism signals to hydrocarbon exploration and monitoring. Repeatability study by Peter, H. & Sascha, B. (2008) raised questions regarding the source of hydrocarbon microtremors. For improved chances of isolating the implied hydrocarbon microtremors from manmade tremors and near-surface impacts, the data require precise recording based on three metrics, frequencies above 3 Hz should be conserved, highly sensitive seismometers should be engaged, and the data registering time should be enough to register ‘tremor-free’ readings.
78

Bioremediation of hydrocarbon water pollution by bioaugmentation using Southern African bacterial isolates

Booyjzsen, Claire 15 May 2008 (has links)
ABSTRACT A new, non-pathogenic bioaugmentation product was formulated specifically for underground use in South African mines, using local bacterial isolates. This was designed for the remediation of various hydrocarbons via biochemical breakdown by sub-surface microorganisms. The active microorganisms were isolated from hydrocarbon-polluted areas of a gold mine. Many commercially available bioaugmentation products are already in existence however, all, to our knowledge, have been developed and tested primarily for use in the northern hemisphere. None have been formulated and tested in Africa. Our series of bacterial isolates are the first to be isolated from mine soils for hydrocarbon biodegradation purposes. Such isolates have further, not previously been tested on sub-surface contamination. The safety associated with the use of such a product in a closed mine-environment is of paramount importance. Initial batch-flask experiments were conducted using a readily-available commercial bioremediation product. This was tested on simple surfactant molecules and compared to the biodegradation observed under standard waste water treatment plant conditions. The bioremediation product increased biodegradation by 6% on average. Bacteria in the product were identified by 16S rDNA gene sequence analysis and found to be homologous to potentially pathogenic Bacillus cereus, known especially to effect immunocompromised individuals, this was of particular concern in the closed mine system. South African isolates were sourced from various hydrocarbon-polluted sources, with six bacteria ultimately being selected from deep sub-surface mine soil and water samples. The ability of these isolates to biodegrade waterborne monograde engine oil was assessed via GC-FID. The isolate showing average percentage growth increase, homologous to Pseudomonas pseudoalcaligenes, was found to degrade the motor oil by 98%. The new isolates were, on average, 16% more efficient at biodegrading petroleum hydrocarbons than the commercial bioremediation product isolates. Formulation of these isolates into the first commercially-available South African developed and tested bioaugmentation product will prove a successful conclusion to this study.
79

Automatic isochoric apparatus for PVT and phase equilibrium studies of natural gas mixtures

Zhou, Jingjun 15 May 2009 (has links)
We have developed a new automatic apparatus for the measurement of the phase equilibrium and pVT properties of natural gas mixtures in our laboratory. Based on the isochoric method, the apparatus can operate at temperature from 200 K to 500 K at pressures up to 35 MPa, and yield absolute results in fully automated operation. Temperature measurements are accurate to 10 mK and pressure measurements are accurate to 0.002 MPa. The isochoric method utilizes pressure versus temperature measurements along an isomole and detects phase boundaries by locating the change in the slope of the isochores. The experimental data from four gas samples show that cubic equations of state, such as Peng-Robinson and Soave-Redich-Kwong have 1-20% errors in predicting hydrocarbon mixture dew points. The data also show that the AGA 8-DC92 equation of state has errors as large as 0.6% when predicting hydrocarbon mixture densities when its normal composition range is extrapolated.
80

Chemical Bonding of Hydrocarbons to Metal Surfaces

Öström, Henrik January 2004 (has links)
Using x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES) and x-ray photoelectron spectroscopy (XPS) in combination with density functional theory (DFT) the changes in electronic and geometric structure of hydrocarbons upon adsorption are determined. The chemical bonding is analyzed and the results provide new insights in the mechanisms responsible for dehydrogenation in heterogeneous catalysis. In the case of alkanes, n-octane and methane are studied. XAS and XES show significant changes in the electronic structure upon adsorption. XES shows new adsorption induced occupied states and XAS shows quenching of CH*/Rydberg states in n-octane. In methane the symmetry forbidden gas phase lowest unoccupied molecular orbital becomes allowed due to broken symmetry. New adsorption induced unoccupied features with mainly metal character appear just above the Fermi level in XA spectra of both adsorbed methane and n-octane. These changes are not observed in DFT total energy geometry optimizations. Comparison between experimental and computed spectra for different adsorbate geometries reveals that the molecular structures are significantly changed in both molecules. The C-C bonds in n-octane are shortened upon adsorption and the C-H bonds are elongated in both n-octane and methane. In addition ethylene and acetylene are studied as model systems for unsaturated hydrocarbons. The validity of both the Dewar-Chatt-Duncanson chemisorption model and the alternative spin-uncoupling picture is confirmed, as well as C-C bond elongation and upward bending of the C-H bonds. The bonding of ethylene to Cu(110) and Ni(110) are compared and the results show that the main difference is the amount of back-donation into the molecular π* orbital, which allows the molecule to desorb molecularly from the Cu(110) surface, whereas it is dehydrogenated upon heating on the Ni(110) surface. Acetylene is found to adsorb in two different adsorption sites on the Cu(110) surface at liquid nitrogen temperature. Upon heating the molecules move into one of these sites due to attractive adsorbate-adsorbate interaction and only one adsorbed species is present at room temperature, at which point the molecules start reacting to form benzene. The bonding of the two species is very similar in both sites and the carbon atoms are rehybridized essentially to sp2.

Page generated in 0.0349 seconds