• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the classification of integrable differential/difference equations in three dimensions

Roustemoglou, Ilia January 2015 (has links)
Integrable systems arise in nonlinear processes and, both in their classical and quantum version, have many applications in various fields of mathematics and physics, which makes them a very active research area. In this thesis, the problem of integrability of multidimensional equations, especially in three dimensions (3D), is explored. We investigate systems of differential, differential-difference and discrete equations, which are studied via a novel approach that was developed over the last few years. This approach, is essentially a perturbation technique based on the so called method of dispersive deformations of hydrodynamic reductions . This method is used to classify a variety of differential equations, including soliton equations and scalar higher-order quasilinear PDEs. As part of this research, the method is extended to differential-difference equations and consequently to purely discrete equations. The passage to discrete equations is important, since, in the case of multidimensional systems, there exist very few integrability criteria. Complete lists of various classes of integrable equations in three dimensions are provided, as well as partial results related to the theory of dispersive shock waves. A new definition of integrability, based on hydrodynamic reductions, is used throughout, which is a natural analogue of the generalized hodograph transform in higher dimensions. The definition is also justified by the fact that Lax pairs the most well-known integrability criteria are given for all classification results obtained.
2

Integrability of Second-Order Partial Differential Equations and the Geometry of GL(2)-Structures

Smith, Abraham David January 2009 (has links)
<p>A GL(2,R)-structure on a smooth manifold of dimension n+1 corresponds to a distribution of non-degenerate rational normal cones over the manifold. Such a structure is called k-integrable if there exist many foliations by submanifolds of dimension k whose tangent spaces are spanned by vectors in the cones.</p><p>This structure was first studied by Bryant for n=3 and k=2. The work included here (n=4 and k=2,3) was suggested by Ferapontov, et al., who showed that the cases (n=4,k=2) and (n=4, k=3) can arise from integrability of second-order PDEs via hydrodynamic reductions.</p><p>Cartan--Kahler analysis for n=4 and k=3 leads to a complete classification of local structures into 54 equivalence classes determined by the value of an essential 9-dimensional representation of torsion for the GL(2,R)-structure. These classes are described by the factorization root-types of real binary octic polynomials. Each of these classes must arise from a PDE, but the PDEs remain to be identified. </p><p>Also, we study the local problem for n >= 5 and k=2,3 and conjecture that similar classifications exist for these cases; however, the interesting integrability results are essentially unique to degree 4. The approach is that of moving frames, using Cartan's method of equivalence, the Cartan--Kahler theorem, and Cartan's structure theorem.</p> / Dissertation
3

Second order quasilinear PDEs in 3D : integrability, classification and geometric aspects

Burovskiy, Pavel Andreevich January 2009 (has links)
In this work we apply the method of hydrodynamic reductions to study the integrability of the class of second order quasilinear equations.
4

Linear degeneracy in multidimensions

Moss, Jonathan January 2016 (has links)
Linear degeneracy of a PDE is a concept that is related to a number of interesting geometric constructions. We first take a quadratic line complex, which is a three parameter family of lines in projective space P3 specified by a single quadratic relation in the Plucker coordinates. This complex supplies us with a conformal structure in P3. With this conformal structure, we associate a three-dimensional second order quasilinear wave equation. We show that any PDE arising in this way is linearly degenerate, furthermore, any linearly degenerate PDE can be obtained by this construction. We classify Segre types of quadratic complexes for which the structure is conformally flat, as well as Segre types for which the corresponding PDE is integrable. These results were published in [1]. We then introduce the notion of characteristic integrals, discuss characteristic integrals in 3D and show that, for certain classes of second-order linearly degenerate dispersionless integrable PDEs, the corresponding characteristic integrals are parameterised by points on the Veronese variety. These results were published in [2].

Page generated in 0.1375 seconds