Spelling suggestions: "subject:"hydroelectric plants"" "subject:"hydroelectricity plants""
1 |
Modelos matemáticos para previsão de vazões afluentes à aproveitamentos hidrelétricos / Mathematical models to predict inflows to hydropower plantsSignoriello, Giuseppe Alessandro, 1977- 25 August 2018 (has links)
Orientador: Ieda Geriberto Hidalgo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-25T19:15:52Z (GMT). No. of bitstreams: 1
Signoriello_GiuseppeAlessandro_M.pdf: 31629174 bytes, checksum: 1674c1adcccf93d9b3ee9711be3f709e (MD5)
Previous issue date: 2014 / Resumo: Este trabalho apresenta a comparação de dois modelos matemáticos desenvolvidos para prever vazões afluentes à usinas hidrelétricas. O objetivo é abordar os aspectos que determinam a qualidade do insumo fundamental para a programação da operação do sistema hidrotérmico brasileiro: a previsão de vazões. A ferramenta de suporte à avaliação dos modelos matemáticos é o SISPREV, gerenciador/executor de estudos de previsão de vazões desenvolvido na UNICAMP. Esta ferramenta permite ao usuário prever vazões diárias e mensais com base em modelos de Regressão Linear (RL) e Sistema de Inferência Neuro-Fuzzy (SINF). Avaliou-se a qualidade das previsões diárias e mensais dos modelos RL e SINF através da metodologia de mineração de dados Cross Industry Standard Process for Data Mining (CRISP-DM). A CRISP-DM é baseada em um modelo hierárquico de processos comumente usados na descoberta de conhecimento. Os resultados mostram que o modelo RL apresenta um desempenho melhor para previsões diárias e o modelo SINF para as previsões mensais. Além disso, o modelo RL tem a tendência a ter bom desempenho de previsão nas situações típicas de chuva-vazão, enquanto os melhores índices de desempenho do modelo SINF caem nas condições atípicas, em particular com a contemporaneidade de altas vazões e baixas precipitações / Abstract: This work presents a comparison between two different mathematical models developed to predict inflows to hydropower plants. The purpose is to explore the aspects that determine the quality of an important input variable for operation planning of the Brazilian hydrothermal system: the inflows forecasting. The tool that supports the evaluation of the mathematical models is called SISPREV. It is a manager/runner of inflows forecasting studies developed at UNICAMP. This tool allows the user to predict daily and monthly inflows based on Linear Regression (RL) models and Neuro-Fuzzy Inference System (SINF). In this thesis, was evaluated the quality of daily and monthly forecasts of RL and SINF models using the methodology Cross Industry Standard Process for Data Mining. CRISP-DM is used in the discovery of knowledge and based on a hierarchical process model. The results show that the RL model performs better for daily predictions and the SINF model for monthly predictions. Furthermore, the RL model tends to have better performance in typical situations of rainfall-inflow, while the best performance indices of the SINF model fall in atypical conditions, in particular with the simultaneous high inflow rates and low precipitation / Mestrado / Planejamento de Sistemas Energeticos / Mestre em Planejamento de Sistemas Energéticos
|
Page generated in 0.08 seconds