• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anisotropic Polymer Blend and Gel Nanocomposites Using External Electric or Magnetic Fields

Sung Ho Yook (8676840) 29 July 2020 (has links)
In this dissertation, new ways for controlling the internal structures of a system of polymer composites, polymer blends, and hydrogel composites by means of external electric or magnetic fields are presented. The first part of this study addresses the development of an anisotropic phase-separated morphology in polymer blends by using electrically pre-oriented clay particles. It was observed that electrically pre-oriented montmorillonite clay particles in a homogenous single-phase blend lead to anisotropic phase-separated morphology of the blends, undergoing demixing upon temperature shift to a two-phase regime. The initial co-continuous microstructure developed into a coarsened and directionally organized phase-separated morphology parallel to the direction of oriented clay particles (applied AC electric field direction) over the annealing time. It was also found that the degree of clay orientation under AC electric field was linearly proportional to the degree of polymer-phase orientation. The temporal morphological evolution was thoroughly analyzed by electron microscopy and X-ray diffraction studies. The second part of the study covers anisotropic hydrogel nanocomposites developed by orienting magnetically sensitive nontronite clay minerals under the strong magnetic fields. Anisotropic hydrogel nanocomposites were formed by magnetic-field assisted orientation of nontronite clays suspended in a hydrogel precursor solution followed by a gelation process. The degree of orientation of nontronite minerals was quantitively characterized by birefringence and small-angle X-ray scattering. The resultant hydrogels exhibited anisotropic optical, mechanical, and swelling properties along the direction of oriented clay minerals. Anisotropic water swelling behaviors can be particularly applied in medical dressing materials, where vertical wicking of fluid into the wound dressing is sought after for minimizing periwound maceration damage.
2

REMOTE CONTROLLED HYDROGEL NANOCOMPOSITES: SYNTHESIS, CHARACTERIZATION, AND APPLICATIONS

Satarkar, Nitin S. 01 January 2010 (has links)
There is significant interest in the development of hydrogels and hydrogel nanocomposites for a variety of biomedical applications including drug delivery, sensors and actuators, and hyperthermia cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled (RC) actuation. In this dissertation, the development of hydrogel nanocomposites containing magnetic nanoparticles/carbon nanotubes, actuation with remote stimulus, and some of their applications are highlighted. The primary hydrogel nanocomposite systems were synthesized by incorporation of magnetic nanoparticles into temperature responsive N-isopropylacrylamide (NIPAAm) matrices. Various nanocomposite properties were characterized such as temperature responsive swelling, RC heating with a 300 kHz alternating magnetic field (AMF), and resultant collapse. The nanoparticle loadings and hydrogel composition were tailored to obtain a nanocomposite system that exhibited significant change in its volume when exposed to AMF. The nanocomposites were loaded with model drugs of varying molecular weights, and RC pulsatile release was demonstrated. A microfluidic device was fabricated using the low temperature co-fired ceramic (LTCC) processing technique. A magnetic nanocomposite of PNIPAAm was placed as a valve in one of the channels. The remote controlled liquid flow with AMF was observed for multiple on-off cycles, and the kinetics of the RC valve were quantified by pressure measurements. The addition of multi-walled carbon nanotubes (MWCNTs) in NIPAAm matrices was also explored for the possibility of enhancement in mechanical properties and achieving remote heating capabilities. The application of a radiofrequency (RF) field of 13.56 MHz resulted in the remote heating of the nanocomposites. The intensity of the resultant heating was dependent on the MWCNT loadings. In order to further understand the RC actuation phenomenon, a semi-empirical heat transfer model was developed for heating of a nanocomposite disc in air. The model successfully predicted the temperature rise as well as equilibrium temperatures for different hydrogel dimensions, swelling properties, nanoparticles loadings, and AMF amplitude. COMSOL was used to simulate temperature rise of the hydrogel nanocomposite and the surrounding tissue for hyperthermia cancer treatment application.
3

ENGINEERING NANOMATERIALS FOR IMAGING AND ANTIBIOFILM APPLICATIONS

Wickramasinghe, Sameera M. 02 June 2020 (has links)
No description available.

Page generated in 0.1022 seconds