• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2413
  • 812
  • 307
  • 239
  • 73
  • 66
  • 42
  • 33
  • 29
  • 29
  • 25
  • 18
  • 15
  • 11
  • 11
  • Tagged with
  • 4918
  • 711
  • 654
  • 538
  • 500
  • 441
  • 433
  • 361
  • 352
  • 324
  • 313
  • 306
  • 287
  • 262
  • 259
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Reaction of hydrogen atoms with propene at 77°K

Yun, Han Bo. January 1962 (has links)
Call number: LD2668 .T4 1962 Y85
392

Hydrogen bonding structure and dynamics studied by terahertz time-domain spectroscopy

Li, Ruoyu January 2014 (has links)
No description available.
393

Inactivation of Clostridium difficile spores in the healthcare environment using hydrogen peroxide vapour

Shaw, Claire M. January 2013 (has links)
Healthcare-acquired infections (HAIs) cost the National Health Service (NHS) in England in excess of £1 billion per year. One of the main HAIs is caused by the endospore-forming bacterium Clostridium difficile. The most common cause of healthcare-acquired diarrhoea in the developed world, C. difficile was responsible for around 850 deaths in England and Wales in 2011. To help reduce the spread of the HAI-causing bacteria, terminal disinfection of isolation rooms and wards using hydrogen peroxide vapour is actively promoted. The key advantages of hydrogen peroxide vapour are its high oxidation potential which has been reported to inactivate bacteria, fungi and spores. An additional advantage of hydrogen peroxide vapour is that it is relatively environmentally friendly, breaking down into oxygen and water. Investigation into bacterial inactivation kinetics was undertaken at controlled, steady concentrations of hydrogen peroxide vapour in the range of 10 ppm to 90 ppm. An exposure chamber was designed whereby the bacterial spores could be exposed to constant concentrations of hydrogen peroxide for various exposure times. Bacterial spores (1-log10 to 8-log10 cfu) were filter deposited onto membranes to achieve an even layer for consistent exposure of the hydrogen peroxide vapour to the spores. Bacillus subtilis is often used for method development in bacterial studies; advantages are it has been shown to be highly resistant to hydrogen peroxide vapour and is not a human pathogen. Following the method development, different strains of C. difficile (ribotypes 014, 027, 103 and 220) were exposed to identify differences in resistance. Inactivation models (Chick-Watson, Series-Event, Weibull and Baranyi) were used to fit the data generated using the environmental chamber. Decimal reduction values (D-values) were calculated from the models for comparative studies regarding the inactivation achieved for the different bacteria and different hydrogen peroxide concentrations. The findings from this thesis revealed the Weibull model provides the best fit for most of the data. An initial shoulder period was identified for B. subtilis which was absent for C. difficile inactivation by hydrogen peroxide vapour; B. subtilis is therefore more resistant to hydrogen peroxide disinfection than C. difficile. Typical D-values for B. subtilis and C. difficile when exposed to hydrogen peroxide vapour at a concentration of 90 ppm were 140 and 1 min, respectively. C. difficile inactivation data were used to develop a model to estimate the log reduction that could be achieved during an inactivation cycle based on the concentration-time integral ( ). This model could be used to estimate the log reduction of commercially available hydrogen peroxide decontamination systems; these release a fixed amount of hydrogen peroxide into the room resulting in a peak concentration before decomposition to oxygen and water. Releasing the hydrogen peroxide into the room in this manner results in spatial and temporal variation; this could result in differences in bacterial inactivation in different areas within the room. Using the aforementioned regression model, the inactivation achieved at all locations within the room could be predicted, which could be used to optimise the current hydrogen peroxide decontamination cycles.
394

Fermentative hydrogen production from wastewater by immobilized biomass

Li, Difu, 李迪夫 January 2007 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
395

An appraisal of the doubly labelled water method for energy expenditure measurements

Ritz, P. January 1993 (has links)
No description available.
396

Structural and crystal engineering studies of metal complexes

Gillon, Amy Louise January 2001 (has links)
No description available.
397

OBSERVATION OF THE INFRARED SPECTRA OF THE DEUTERATED TRIATOMIC HYDROGEN MOLECULAR TONS: H₂D⁺, HD₂⁺, and D₃⁺

SHY, JOW-TSONG. January 1982 (has links)
The infrared vibrational-rotational spectra of the deuterated triatomic hydrogen molecular ions, H₂D⁺, HD₂⁺, and D₃⁺ have been observed with the Doppler-tuned ion-beam laser spectroscopic method with collision detection. Triatomic hydrogen molecular ions are produced in a coaxial electron-impact ion source. Next, the ions are accelerated and formed into a beam of several keV energy, which is then intercepted at a small angle by a frequency-stabilized CO laser beam. The energy of the ion beam is adjusted to Doppler-shift an ion transition into resonance with a nearby laser line. On resonance, the laser light stimulates the transition to take place. If the resonating states differ in population, the laser-induced transition produces a net population transfer. The occurrence of population transfer is detected by monitoring the transmission of the ion beam through a gas target after laser interaction. The transmission through the target is dependent upon the ion beam population distribution and, therefore, the laser-induced transition can be detected by detecting the change of the transmission of the ion beam. A mass analyzer before the target gas facilitates the mass identification of the observed transitions. We have measured 45 D₃⁺ transition frequencies, 9 H₂D⁺ transition frequencies, and 31 HD₂⁺ transition frequencies, all between 1650 and 2000 cm⁻¹, to better than ±0.0005 cm⁻¹ or ±0.3 ppm. The identifications of the quantum numbers are still in progress. This study should greatly help the search of H₃⁺ and H₂D⁺ ions in interstellar medium.
398

ELECTRON IMPACT DISSOCIATIVE IONIZATION OF HYDROGEN, WATER, AND HYDROGEN SULFIDE.

CORDARO, RICHARD BRIAN. January 1985 (has links)
The dissociative ionization by electron impact of H₂, H₂O, and H₂S was investigated between the electron impact energies of 20 and 45 eV. Protons were the detected fragments, and a time-of-flight method was used to measure the proton kinetic energies. By also measuring the thresholds for the production of discrete energy groups of protons, it was possible to determine the dissociation limits and kinetic energy distributions for individual electronic states. It was found that autoionizing states that lead to dissociation were the major contributors of proton fragments for all of the molecules investigated. Some of the measurements are tabulated in the following table. (UNFORMATTED TABLE FOLLOWS) Molecule Threshold Dissociation Probable Probable (eV) limit (eV) state fragments H₂ 24.5±1.0 18.0±1.0 Q₁ ¹Σ(g)⁺ H⁺, H(1S) 30.5±1.0 18.0±1.0 Q₁ ¹Πᵤ H⁺, H(1S) 36.5±1.0 -- ²Πᵤ H⁺, H(2P) H₂O 24.5±1.0 19.5±1.0 -- H⁺, OH (X²Π) 29.5±1.0 23.0±1.0 -- H⁺,O(³P),H(1S) H₂S 25.5±1.0 18.0±1.0 -- H⁺, HS (X²Π) 32.0±1.0 -- -- H⁺, . . . 42.0±1.0 -- -- H⁺, . . . (TABLE ENDS)
399

Numerical experiments in the diffusion, with trapping, ?of gases through metal

Stern, E. J. January 1984 (has links)
No description available.
400

Optimising implementation strategies for fuel cell powered road transport systems in the United Kingdom

Lane, Benjamin M. January 2002 (has links)
No description available.

Page generated in 0.0546 seconds