• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 280
  • 59
  • 55
  • 39
  • 10
  • 9
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 590
  • 166
  • 96
  • 81
  • 62
  • 58
  • 52
  • 52
  • 51
  • 51
  • 51
  • 49
  • 45
  • 45
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

N-heterocyclic carbene catalysis: expansion of

Ogle, James William 15 May 2009 (has links)
Asymmetric hydrogenation as a general route to polypropionates has been explored for allylic alcohols, acids, and derivatives, which has led to the generation of 2,4-dimethylated hexane derivatives. Quantitative yields in most cases and enantioselectivities greater than 98% were obtained. A remarkable stereofacial inversion was observed when an ester or acid was present in the allylic position instead of an alcohol or alcohol derivative. This led to the construction of all four diastereomers of the hexanol series from a single enantiomer of hydrogenation catalyst. Also described are an attempted synthesis of (-)-lardolure, a formal synthesis of the methyl ester portion of the preen gland extract from the domestic goose Anser anser, and a total synthesis of an extract from the fungi A. cruciatus. The synthesis of these compounds demonstrated shortcomings of the known catalyst system showing enantioselectivities for polymethylated compounds was high, while diastereoselectivity was low. Methodology to develop new N-heterocyclic carbene catalysts was developed using the cyanide coupling of aldimines to generate electronically tunable 1,3,4,5-tetraaryl complexes, and X-ray, IR, and calculations were used to elucidate their electronic characteristics. These studies indicate that the 4,5-positions have as great an influence on the metal-ligand bond as the 1,3-positions. In addition, they are among the most electron-donating 2- metalated N-heterocyclic carbenes found thus far. An intrinsic relationship between catalytic activity and electron donating ability was found in transfer hydrogenations.
132

Asymmetric hydrogenations of aryl alkenes using imidazol-2-ylidene iridium complexes

Cui, Xiuhua 29 August 2005 (has links)
A library of iridium complexes featuring oxazoline and imidazol-2-ylidene ligands were synthesized by reaction of a library of imidazoles with a second library of oxazoline iodides. These complexes were active catalysts for hydrogenations of aryl substituted monoenes. Tri- and 1,1-disubstituted alkenes were hydrogenated quantitatively with ee??s up to 99% at 1 atm hydrogen pressure. Catalyst, substrate, temperature and pressure effects were studied. The iridium complexes were also used for the kinetic study of hydrogenation of 2,3- diphenylbutadiene. This hydrogenation is a stepwise reaction: one double bond was hydrogenated first, then the second one. Both step hydrogenations were zero order in alkene. The consumption of 2,3-diphenylbutadiene was first order in catalyst, and probably first order in hydrogen pressure too. The enantioselectivity for the first step hydrogenation was low. There were match and mismatch catalyst-substrate relationships for the second step hydrogenation, and the enantioselectivities for this step were catalyst controlled. NMR studies indicated that the initiation of the reaction involved both hydrogen and alkene substrate. A competitive experiment was designed to explore the formation of meso-alkane at first step hydrogenation, and the results indicated that the alkane was formed predominantly via an associative mechanism. Four types of conjugate dienes were synthesized and hydrogenated. Different reactivities and selectivities were obtained for each type of dienes. In the best case, a diene was hydrogenated quantitatively with an excellent ent/meso ratio of 20:1.0 and 99% enantioselectivity. The scope, limitation and potential applications of the reactions were discussed. A selection of the dienes was hydrogenated with the Crabtree??s catalyst, for comparison, and the yields, conversions and diastereoselectivities were inferior to those from iridium-oxazoline-imidazol-2-ylidene catalysts.
133

A process for hydrogenation of silicon carbide crystals

Rao, Yeswanth Lakshman. January 2001 (has links)
Thesis (M.S.)--Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
134

Transition metal catalyzed carbonyl additions under the conditions of transfer hydrogenation

Patman, Ryan Lloyd 01 June 2011 (has links)
The efficient construction of complex organic molecules mandates that an assortment of methods for forming C-C bonds be available to the practicing synthetic chemist. The addition of carbon based nucleophiles to carbonyl compounds represents a broad class of reactions used to achieve this goal. Traditional methodology requires the use of stoichiometrically preformed organometallic reagents as nucleophiles in this type of reaction. However, due to the moisture sensitivity, excessive preactivation and inevitable generation of stoichiometric waste required for the use of these reagents, alternative methods have become a focus of the synthetic organic community. The research presented in this dissertation describes a new class of C-C bond forming reactions enabled through catalytic transfer hydrogenation. Here, the development and implementation of efficient green methods for carbonyl addition employing π-unsaturates as surrogates to preformed organometallic reagents is described. Additionally, this research describes the first systematic studies toward using alcohols as electrophiles in carbonyl allylation, propargylation and vinylation reactions. / text
135

Effective Optimization of Catalytic Hydrogenations Using a Rationally Designed Hydrogen Uptake System

Waldie, Fraser, D. Cole 03 February 2012 (has links)
This thesis examines the various aspects of catalytically deoxygenating biomass-derived feedstocks including the relevant catalyst materials, conditions and equipment. Preliminary investigations probed the ability of T316 SS, as a reactor material, to perform as an effective hydrogenation catalyst at temperatures above 100 oC, under reducing aqueous-acidic media. Additionally, an external apparatus was developed in order to facilitate the optimization of catalytic hydrogenations. The accuracy and applicability of this system was confirmed using the reduction of levulinic acid to γ-valerolactone. Accurate information pertaining to the quantity of hydrogen consumed was obtained in addition to in situ differential rates reaction allowing for the derivation of the integrated rate law. Subsequently, the newly designed uptake system was used to monitor, and effectively optimize, the deoxygenation of a series of complex furfural-derived substrates towards the attempted production of high-energy density fuels. Commercially available Pd/C and Ru/C catalysts were employed, unsuccessfully, under a variety of reaction conditions. / NSERC, Los Alamos National Laboratories, Ontario Innovation Trust
136

Hydrogen Fuel Technologies for Vehicular Transportation

Dean, Darrell Christopher 23 May 2012 (has links)
With continually increasing concern over anthropogenic carbon dioxide emissions and their effect on global climate, the search for alternative fuels, especially for mobile applications such as in vehicles, is of immediate concern. Herein, research towards hydrogen as an alternative energy carrier is discussed; first, with the investigation of “hybrid” hydrogen storage systems that are meant to provide hydrogen for a fully fuel cell powered vehicle via a chemical reaction; and second, that of a thermally regenerative fuel cell system (TRFC) to partially supplant the energy needs of transport trucks by harnessing engine waste heat. Hybrid storage systems are comprised of a heterocyclic carrier that undergoes endothermic hydrogen release (indoline) and an organic hydride that undergoes exothermic release (amine boranes). Different embodiments are considered, varying in the mechanism of exothermic release (thermolysis vs. hydrolysis) and the mode of combination (physical vs. chemical). A thorough investigation into the effect of catalyst, sterics and temperature on the heterogeneously catalyzed dehydrogenation rate of N-heterocycles was executed. A number of trends with respect to the catalyst identity and the level of steric protection around the nitrogen atom were observed. The study towards a TRFC involved an investigation of the heterogeneous hydrogenation of benzylic ketones. Screening of a myriad of different catalysts was performed, including those with various supports, metals and modifications, and the examination of how both the sterics and electronics of the ketone affect the hydrogenation rate. A rapid hydrogenation at relatively low metal loadings and hydrogen pressures with extreme selectivity (>99.9%) is required. To date, however, such a combination has been elusive. The best selectivity was obtained with commercial Pd/SiO2 (99.99%), yet at a low conversion of 6%, after 1 h under 1 atm of H2 at 100 ˚C. In addition to the poor conversion, SiO2 is not electronically conductive and is therefore not fit for this application. The best viable catalyst, then, was a Pd/Vulcan XC-72 (carbon) catalyst made by the author with an observed 14% conversion and 98% selectivity under the same conditions. However, trends in activity and selectivity with respect to the catalyst and ketone have been characterized herein. / Thesis (Ph.D, Chemistry) -- Queen's University, 2012-05-23 13:37:53.172
137

Selective hydrogenation of lignin-derived model compounds to produce nylon 6 precursors

Zhou, Xiaojuan 12 January 2015 (has links)
This study investigated the conversion of monomeric lignin fragments into cyclohexanols for use as a source of lignin-derived monomers for renewable Nylon 6 production. Lignin-derived monomeric phenolic species was transformed to their cyclohexanol analogs via selective catalytic hydrogenation. A fixed-bed flow reactor was used to evaluate the selective hydrogenation of individual model phenolic species (guaiacol, 4-methylguaiacol or diphenyl ether). The catalyst composition studied was Ni/SiO₂, which was previously shown to form cyclohexanol as an intermediate from phenol. A primary focus was on tuning the reaction conditions to form desired products, while avoiding the formation of bicyclic species which can be precursors to catalyst deactivation, or fully hydrogenated products of lower value. Reaction pathways of guaiacol, 4-methylguaiacol and diphenyl ether were studied. Major products obtained from guaiacol, 4-methylguaiacol and diphenyl ether reactions were 2-methoxycyclohexanone, 4-methylcyclohexanol and cyclohexanol, respectively. Spent catalyst was analyzed for extent of deactivation.
138

Directed hydrogenation of sulphoxides and sulphones

Price, David Wilfred January 1992 (has links)
This thesis describes the synthesis of a number of hydroxy vinylsulphoxides and sulphones by a high pressure modification of the Baylis-Hillman reaction, together with their directed hydrogenation catalysed by rhodium catalysts. A detailed kinetic analysis of a number of the hydrogenation reactions carried out by numerical analysis is also presented. Chapter 1 serves as an introduction to directed hydrogenation and the chemistry of sulphur containing compounds. Chapter 2 details the synthesis of catalysts and substrates used in hydrogenation reactions. The use of high pressures to improve the performance of the Baylis-Hillman reaction is included. Chapter 3 details the products and the selectivity obtained in the hydrogenation of hydroxy vinylsulphoxides and sulphones. The kinetic resolution of 3-phenyl-2-(phenylsulphonyl)- propene-3-ol using a DiPAMP rhodium catalyst is described. Chapter 4 details the numerical analysis of the kinetics of the hydrogenation reactions of a number of hydroxy vinylsulphoxides and sulphones.
139

Metathesis Catalysts in Tandem Catalysis: Methods and Mechanisms for Transformation

Beach, Nicholas James 18 April 2012 (has links)
The ever-worsening environmental crisis has stimulated development of less wasteful “green” technologies. To this end, tandem catalysis enables multiple catalytic cycles to be performed within a single reaction vessel, thereby eliminating intermediate processing steps and reducing solvent waste. Assisted tandem catalysis employs suitable chemical triggers to transform the initial catalyst into new species, thereby providing a mechanism for “switching on” secondary catalytic activity. This thesis demonstrates the importance of highly productive secondary catalysts through a comparative hydrogenation study involving prominent hydrogenation catalysts of tandem ring-opening metathesis polymerization (ROMP)-hydrogenation, of which hydridocarbonyl species were proved superior. This thesis illuminates optimal routes to hydridocarbonyls under conditions relevant to our ROMP-hydrogenation protocol, using Grubbs benzylidenes as isolable proxies for ROMP-propagating alkylidene species. Analogous studies of ruthenium methylidenes and ethoxylidenes illuminate optimal routes to hydridocarbonyls following ring-closing metathesis (RCM) and metathesis quenching, respectively. The formation of unexpected side products using aggressive chemical triggers is also discussed, and emphasizes the need for cautious design of the post-metathesis trigger phase.
140

Preparation of Functional Polymer Nanoparticles Using Semibatch Microemulsion Polymerization

Wang, Hui 17 May 2012 (has links)
The present project is related to two aspects of research (i) to develop a new technique to synthesize fine nano-size polymer particles with unique and controllable properties; (ii) to synthesize novel functional polymer nanoparticles aiming to overcome the central challenge that has limited the commercialization of green latex hydrogenation, i.e. the optimal interplay of accelerating the hydrogenation rate, decreasing the required quantity of catalyst, and eliminating the need for an organic solvent. Focusing on these two objectives stated above, the following studies were carried out. (1) Development of Micellar Nucleation Mechanism for Preparation of Fine Polymer Nanoparticles. Polymer nanoparticles below 20 nm with a solid content of more than 13 wt% and a narrow molecular weight polydispersity (~1.1) were prepared using a micellar nucleation semibatch microemulsion polymerization system emulsified by sodium dodecyl sulfate (SDS), with SDS/monomer (methyl methacrylate) and SDS/H2O weight ratios of up to 1:16 and 1:100, respectively. It was found that for benzoyl peroxide (BPO), micellar nucleation is more favorable for the synthesis of smaller polymer nanoparticles than ammonium persulfate (APS), which gives rise to homogeneous nucleation and 2,2'-azobisisobutyronitrile (AIBN), which involves partially heterogeneous nucleation. In the polymerization process, there exists a critical stability concentration (CSC) for SDS, above which the size of the nanoparticles is to be minimized and stabilized. With an increase in the monomer addition rate, the polymerization system changes from a microemulsion system to an emulsion system. A mechanism was proposed to describe the micellar nucleation process of semibatch microemulsion polymerization. This technique will pioneer a significant new way to use a simple but practical method to synthesize narrow PDI polymers, which is a very meaningful new development. (2) Diene-Based Polymer Nanoparticles: Preparation and Direct Catalytic Latex Hydrogenation. At the first stage of this study, poly(butadiene-co-acrylonitrile) nanoparticles were synthesized in a semibatch microemulsion polymerization system using Gemini surfactant trimethylene-1,3-bis (dodecyldimethylammonium bromide), referred to as GS 12-3-12, as the emulsifier. The main characteristic of this GS emulsified system lies in that the decomposition rate of initiator was increased considerably at a low reaction temperature of 50 °C because of the acidic initiation environment induced by GS 12-3-12. The particle size can be controlled by the surfactant concentration and monomer/water ratio and a particle size below 20 nm can be realized. The obtained latex particles exhibit a spherical morphology. The microstructure and copolymer composition of the polymer nanoparticles was characterized by FT-IR and 1H NMR spectroscopy. The effects of the surfactant concentration on the particle size, Zeta-potential, polymerization conversion, copolymer composition, molecular weight, and glass transition temperature (Tg) were investigated. The kinetic study of the copolymerization reaction was carried out, which indicated that an azeotropic composition was produced. The relationship between Tg and number-average molecular weight can be well represented by the Fox-Flory equation. Finally, the semibatch process using conventional single-tail surfactant SDS was compared. In the second stage of this study, the prepared unsaturated nanoparticles were employed as the substrates for latex hydrogenation in the presence of Wilkinson’s catalyst, i.e., RhCl(P(C6H5)3)3. The direct catalytic hydrogenation of poly(butadiene-co-acrylonitrile) nanoparticles in latex form was carried out under various experimental conditions in the presence of Wilkinson’s catalyst without the addition of any organic solvents. In order to appreciate the important factors which influence the nature and extent of this type of hydrogenation, the effects of particle size within the range from 17.5 to 42.2 nm, temperature from 90 to 130 °C, and catalyst concentration from 0.1 to 1.0 wt% (based on the weight of polymer) on the hydrogenation rate were fully investigated. The kinetics study shows that the reaction is chemically controlled with a fairly high apparent activation energy, which is calculated to be between 100 and 110 kJ/mol under the experimental conditions employed. Mass transfer of both hydrogen and catalyst involved in the reaction system was discussed. The analysis of mass transfer of reactants coupled with the reaction kinetics indicated that the catalysis of hydrogenation proceeds at the molecular level. The competitive coordination of the active catalyst species RhH2Cl(PPh3)2 between the carbon-carbon unsaturation and the acrylonitrile moiety within the copolymer was elucidated based on the reaction kinetics of the hydrogenation. (3) Poly(methyl methacrylate)-poly(acrylonitrile-co-butadiene) (PMMA-NBR) Core-Shell Polymer Nanoparticles: Preparation and Direct Catalytic Latex Hydrogenation. PMMA-NBR core-shell structured nanoparticles were prepared using a two stage semibatch microemulsion polymerization system with PMMA and NBR as the core and shell respectively. The GS 12-3-12 was employed as the emulsifier and found to impose a pronounced influence on the formation of the core-shell nanoparticles. A spherical morphology of the core-shell nanoparticles was observed. It was found that there exists an optimal MMA addition amount which can result in the minimized size of PMMA-NBR core-shell nanoparticles. The formation mechanism of the core-shell structure and the interaction between the core and shell domains was illustrated. The PMMA-NBR nano-size latex can be used as the substrate for the following direct latex hydrogenation catalyzed by Wilkinson’s catalyst to prepare the PMMA-HNBR core-shell nanoparticles. The hydrogenation rate is rapid. In the absence of any organic solvent, the PMMA-HNBR nanoparticles with a size of 30.6 nm were obtained within 3 h using 0.9 wt% Wilkinson’s catalyst at 130 °C under 1000 psi of H2. This study provides a new perspective in the chemical modification of NBR and shows promise in the realization of a "green" process for the commercial hydrogenation of unsaturated elastomers.

Page generated in 0.157 seconds