• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Contemporary Hydrologic Modification on Vegetation Community Composition Distinctness in the Florida Everglades

Isherwood, Ewan 18 October 2013 (has links)
The historic Everglades Ridge and Slough landscape maintained regularly spaced and elevated sawgrass ridges interspersed among exposed deeper-water sloughs; however, widespread but irregular hydrologic modification has degraded much of this landscape patterning. My study assessed the effects of hydrologic modification on vegetation community distinctness within the Ridge and Slough landscape through sampling species composition at fine-scales along a hydrologic gradient to measure the magnitude of segregation of species among patch types. The results show that vegetation community and topographic variation degradation is widespread, with distinctness differences proceeding and possibly being driven by topographic variation loss. Vegetation responses to past hydrologic regime modifications are likely affected by temporal lags; however, vegetation distinctness regeneration may also be hindered by a vegetatively homogeneous alternative stable state. Hydrologic regime restoration is critical for Ridge and Slough patterned landscape reestablishment, but management targets are complicated by vegetation response lags and possibly alternative stable states.
2

Ecological effects of flow and temperature regimes on fish communities in temperate rivers

Macnaughton, Camille 04 1900 (has links)
Les organismes aquatiques sont adaptés à une grande variabilité hydrique et thermique des rivières. Malgré ceci, la régulation des eaux suscite des changements aux débits qui peuvent provoquer des impacts négatifs sur la biodiversité et les processus écologiques en rivière. Celle-ci peut aussi causer des modifications au niveau des régimes thermiques et des caractéristiques de l’habitat du poisson. Des données environnementales et biologiques décrivant l’habitat du poisson existent, mais elles sont incomplètes pour plusieurs rivières au Canada et de faible qualité, limitant les relations quantitatives débit-température-poissons à un petit nombre de rivières ou à une région étudiée. La recherche menée dans le cadre de mon doctorat concerne les impacts de la génération d'hydroélectricité sur les rivières; soit les changements aux régimes hydriques et thermiques reliés à la régulation des eaux sur la variation des communautés ichtyologiques qui habitent les rivières régulées et naturelles au Canada. Suite à une comparaison d’échantillonnage de pêche, une méthode constante pour obtenir des bons estimés de poisson (richesse, densité et biomasse des espèces) a été établie pour évaluer la structure de la communauté de poissons pour l’ensemble des rivières ciblées par l’étude. Afin de mieux comprendre ces changements environnementaux, les principales composantes décrivant ces régimes ont été identifiées et l’altération des régimes hydriques pour certaines rivières régulées a été quantifiée. Ces résultats ont servi à établir la relation significative entre le degré de changement biotique et le degré de changement hydrique pour illustrer les différences entre les régimes de régulation. Pour faire un complément aux indices biotiques déjà calculés pour l’ensemble des communautés de poissons (diversité, densité et biomasse des espèces par rivière), les différences au niveau des guildes de poissons ont été quantifiées pour expliquer les divers effets écologiques dus aux changements de régimes hydriques et thermiques provenant de la gestion des barrages. Ces derniers résultats servent à prédire pour quels traits écologiques ou groupes d’espèces de poissons les composantes hydriques et thermiques sont importantes. De plus, ces derniers résultats ont servi à mettre en valeur les variables décrivant les régimes thermiques qui ne sont pas toujours inclues dans les études hydro-écologiques. L’ensemble des résultats de cette thèse ont des retombées importantes sur la gestion des rivières en évaluant, de façon cohérente, l’impact de la régulation des rivières sur les communautés de poissons et en développant des outils de prévision pour la restauration des écosystèmes riverains. / Widespread anthropogenic impacts to river ecosystems are currently changing the naturaly variability of flow and temperature regimes, with potentially important repercussions on the stability and function of aquatic communities. Although fish community responses to flow alterations from river regulation have been quantified in the past (e.g. late maturation of salmonid populations due to attenuated flows or stranding of fishes from down-ramping flows), the scarcity of high quality, long-term data, especially in Canadian rivers, has limited our understanding of the effect this has had on other environmental drivers and fish community structure across this heterogenous landscape. Using extensive field surveying across unregulated and regulated rivers in Alberta, Ontario, Québec, and New Brunswick coupled with data from national, provincial, and private flow and water temperature gauge networks, I showed the effects of flow and thermal regimes on fish diversity, density, biomass, and different types of ecological guilds. I also examined the extent to which different regulation practices have modulated the response of riverine fish to the combined effect of changes to flow and thermal regimes. To first establish a methodology for quantifying fish community structure across rivers, I generated reliable site-specific species richness, density, and biomass metrics that combined measures from two commonly used surveying methods. To then quantify the response of these fish community metrics to river regulation, I defined daily and hourly flow indices based on river flow conditions, developed hydrologic regime variables that described dominant patterns of flow variation, and calculated flow alterations based on the difference in multivariate space of these hydrologic regime variables for regulated rivers from reference flow conditions. By applying this same approach to fish community metrics, I identified a significant positive relationship between biotic and flow alterations and showed a separation between the two most distinct flow regulation types, run-of-river (ROR) and hydro-peaking. To tease apart the relative importance of each environmental driver for establishing fish communities across river regimes, I provided quantitive thermal indices based on river water temperatures and developed thermal variables akin to those described for flow regimes. To evaluate whether quantitative fish guild estimates, rather than total river biomass or density estimates, would respond more strongly to river thermal regimes, I compared the response of different types of fish guilds to flow and thermal regimes across rivers, including those subjected to river regulation. All fish guild models performed better relative to studying total river estimates, confirming the use of trait-environmental relationships for studying fish community responses across rivers. I also found that integrating thermal regimes in hydro-ecological studies is critical in predicting fish guild responses across rivers. Collectively, these findings have important repercussions for river management, as they provide comprehensive assessments of the environmental variables driving fish community responses, inform the potential range of ecological consequences of anthropogenic alterations on natural flow regimes, and contribute to establishing more transferable predictions for restoring impacted rivers. More broadly, the thesis results are important given future global climate warming, its synergistic effects with other anthropogenic stressors, and ongoing scarcity for water and energy sources.

Page generated in 0.1845 seconds