41 |
Gold fineness in hydrothermal ores : an investigation into the distribution of gold and silver in Southern Rhodesian gold oresEales, Hugh V January 1961 (has links)
This investigation is concerned with primary variations in the silver content of gold which occurs in hydrothermal deposits, particularly those of hypothermal character which are found in Basement rocks in Southern Rhodesia. The nature of the gold produced by a number of different mines has been studied by reference to production data, and microscope techniques as well as gold and silver assays have been used to determine and to explain the variations in gold fineness. The literature does not contain a great deal of information which is relevant to this topic, but an attempt has been made here to summarize the more important contributions by different writers. From this it emerges that the interpretations given by different investigators are in conflict and that paradoxes may arise when efforts are made to explain observed variations in fineness in terms of certain generalizations which have become entrenched in the literaure. In particular, it is shown that falling temperature alone cannot account for the occurrence of silver-rich gold in certain deposits. The Gwanda district of Southern Rhodesia has been selected as a typical gold belt, and the variation in fineness in 150 producers is described. The deposits are hypothermal in character, and the average fineness of the gold is high but variable, but in a small proportion the fineness is low. It is shown that the nature of the host rock and the distance of a deposit from the granite contact appear to have no influence on the fineness of the gold and that there is no zonal arrangement of fineness values. There is a suggestion that diversity of mineral species in any particular area may be accompanied by rather wide fluctuations in the gold fineness. The variations of fineness in eight typical Southern Rhodesian deposits are studied in detail, by analysis of production data, by assaying specimens of the ore and by the examination of polished specimens of gold-bearing ore. Briefer reference is made to two other deposits in the territory, and to deposits in other countries which appear to bear out the conclusions reached in this section. It emerges that there are two factors which can commonly be correlated with variations in fineness. The first of these is the grade of the ore: high-grade ore generally contains purer gold than low-grade ore. Secondly, the textural evidence indicates that gold which separates relatively early in the paragenesis contains more silver than that which is deposited in the final stages of metallization. A general survey which draws on the literature as well as on the writer's examinations of deposits in the territory indicates that, in general, gold which is associated with late-stage minerals such as tellurides, antimony, bismuth and bismuthinite is silver-poor. Gold associated with galena may be either silver-rich or silver-poor, whereas gold which is of the same age as chalcopyrite or sphalerite is very frequently rich in silver. The difficulty which is encountered in establishing the age of gold which is intimately associated with pyrite and arsenopyrite renders uncertain the correlation between fineness and age of gold in these latter cases. There are, however, indications that gold which is truly contemporaneous with either pyrite or arsenopyrite is silver-rich. In the discussion, the objections to the common practice of singling out temperature as the most potent factor controlling gold fineness are listed. Chief amongst these objections is the fact that gold does not in all deposits increase in fineness with increasing depth: examples are quoted where fineness was found to decrease as deeper levels of the ore body were exploited. It is shown that there is no consistent relationship between the size of gold grains and their silver content. It is the writer's conclusion that in hydrothermal deposits in this territory the high fineness of the gold is due to increasing solubility of silver in the ore fluids in the late states, and that where hydrothermal deposits are characterized by gold with low average fineness, an unusually large proportion of the gold has been deposited early in the paragenotic sequence. In the majority of hypothermal deposits, however, the bulk of tho gold separates late in the sequence and the fineness is accordingly high. It is believed that the relationship which exists between fineness and tenor in many deposits is due to protracted crystallization of gold in those portions of the ore body which remained permeable to the latest stages. These portions of the ore body, which represent either valuable ore shoots or ore shoots in miniature, are likely to contain gold of variable character, but the average silver content will be low because a large proportion of the gold is "late" gold. The factors which might cause epithermal gold to have a lower fineness than mesothermal or hypothermal gold are briefly discussed. Some possible applications of this study are indicated in the final chapter. It is claimed that records of gold fineness might constitute a valuable addition to mill records. Tentative suggestions are made regarding a method whereby the approaching exhaustion of a deposit might in some cases be predicted. With regard to the origin of the gold in the Witwatersrand sediments, it is pointed out that the modified placer hypothesis is not fully equipped to explain certain of the variations in the composition of the gold.
|
42 |
The mineralogy and major element geochemistry of ferromanganese crusts and nodules from the northeastern equatorial Pacific OceanWade, Lowell January 1991 (has links)
A study of the mineralogy and major element geochemistry of ferromanganese crusts and nodules from the northeastern equatorial Pacific Ocean involved three inter-related projects: ft) the major element geochemistry of crusts and nodules from two study areas, (2) the development of a selective sequential extraction scheme (SSES) and a differential X-ray diffraction technique (DXRD) for the study of the mineralogy of the deposits, and (3) the application of the SSES and DXRD to a small population of crusts and nodules from the two study areas. The objectives of the first project were to relate the composition of the crust and nodule samples to the environment of formation as well as to the mineralogy which could be identified from a bulk powdered sample. The SSES was developed to determine the partitioning of Cu, Ni, and Co concentrations between the Mn and Fe oxides present in crusts and nodules. In developing a SSES, two goals had to be attained: (1) since crust and nodule samples are finite in size and numerous different analyses are to be preformed on a single sample, a SSES should be developed which uses as small amount of sample as feasible, and (2) develop a SSES which is as time efficient as possible. The development of the DXRD in conjuction with the SSES identified which Mn and Fe oxide mineral phase was responsible for hosting Cu, Ni, and Co. In developing the DXRD procedure two other goals had to be attained: (1) use of small leached samples, and (2) recovery of the sample aafter XRD analysis. The purpose of the third project was to test the two analytical procedures on a group of crust and nodule samples which have a wide range in compositions and oxide phase mineralogies.
One group of hydrothermal nodules, from Survey Region B, was found to be enriched in Mn and depleted in Fe and Si. The Mn-rich mineral phases were identified as todorokite and birnessite. The second group of hydrothermal nodules, from Survey Region B, was found to be enriched in Fe and Si and depleted in Mn. The Fe-Si rich mineral phase was identified as iron-rich nontronite. Both groups of hydrothermal nodules were depleted in Co, Cu, and Ni. Dymond et al. (1984) and Chen & Owen (1989) identified one group of hydrothermal nodules located close to the East Pacific Rise (EPR) as being enriched in Fe but depleted in Mn, Cu, Ni, and Co. This composition agrees with the Fe-Si rich hydrothermal nodules identified in Survey Region B. Both Dymond et al. (1984) and Chen & Owen (1989), however, interpreted a second group of nodules, close to the EPR, which were enriched in Mn but depleted in Cu, Ni, and Co as suboxic diagenetic deposits. This group of nodules is the Mn-rich end-member composition of hydrothermal nodules identifed in this study.
The composition of nodules from Survey Region B indicates there is a correlation between Co abundance and the proximity of the nodules to the hydrothermal discharge from the JEPR. Nodules that are Co-enriched are found farthest away from hydrothermal activity. In contrast, cobalt-depleted nodules coincide with known areas of hydrothermal activity.
The SSES and DXRD was applied to a small population of crusts and nodules from the two Survey Regions. The DXRD patterns from the second stage of leaching on the crusts and nodules showed that the iron phase mineralogy in marine crusts and nodules is either akaganeite or ferrihydrite. The DXRD patterns from the second stage of leaching on the Mn-rich hydrothermal crusts and nodules, from Survey Region B, identified the Mn-bearing mineral hausmannite. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
|
43 |
Hydrothermal sulfide deposits on the East Pacific Rise, 21NÌŠGoldfarb, Marjorie Styrt January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND LINDGREN / Bibliography: leaves 269-280. / by Marjorie Styrt Goldfarb. / Ph.D.
|
44 |
Analysis of the sulfur system in waters from the Galapagos Ridge hydrothermal ventsHuested, Sarah Stuart January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1979. / Microfiche copy available in Archives and Science. / Bibliography: leaves 68-71. / by Sarah S. Huested. / M.S.
|
45 |
Emerald mineralization and amphibolite wall-rock alteration at the Khaltaro pegmatite-hydrothermal vein system, Haramosh Mountains, Northern PakistanLaurs, Brendan M. 17 January 1995 (has links)
Graduation date: 1995
|
46 |
Les systèmes métallogéniques hydrothermaux à tungstène et métaux rares (Nb-Ta-Li-Sn) de la période Jurassique-Crétacé au sud de la province de Jiangxi (Chine) / Tungsten and rare metal (Nb-Ta-Li-Sn) hydrothermal metallogenic systems of the Jurassic-Cretaceous period in the southern Jiangxi province (SE China)Legros, Hélène 14 December 2017 (has links)
Le tungstène est défini comme “ressource minérale critique” par la Commission Européenne. La province de Jiangxi, située au sud-est de la Chine, dans le bloc Cathaysia, représente 90 % des réserves en tungstène chinoises. Ce travail est basé sur l’étude des gisements hydrothermaux à W-Sn de Maoping et Piaotang, tous deux situés dans le district de Dayu (sud de la province de Jiangxi). Cette thèse a permis de (i) développer des traceurs pétrographiques et minéralogiques de processus minéralisateurs à travers des études paragénétiques détaillées et la géochimie des micas lithinifères et donc d’apporter un modèle impliquant des fluides multiples se chevauchant dans le temps et associés à plusieurs épisodes distincts de mise en place de minéralisations en métaux rares, (ii) définir par l’étude d’inclusions fluides deux processus fluides comme seul responsables de la précipitation de la minéralisation dans ces gisements « géants » : la différenciation magmatique de granites peralumineux et des processus de mélange, et (iii) de développer des approches de datation associés à ces systèmes montrant que la minéralisation en tungstène se met en place aux alentours de 160 Ma, antérieurement à la plupart des âges obtenus sur les minéraux de gangue datés dans cette zone et défini alors une remise à zéro majeure des systèmes isotopiques par de multiples circulations fluides entre 150 et 155 Ma. De plus, les stades post-minéralisations ont pu être définis pour la première fois et révèlent l’implication de magmatisme peralcalin impliqué dans la précipitation de minéralisations à Nb-Ta-Y-REE aux alentours de 130 Ma. A la lumière de cette observation, cette thèse s’est aussi tournée vers le développement de méthodes de datation in situ sur columbo-tantalite / Tungsten is defined as a “critical mineral resource” by the European Commission. The Jiangxi province, located in the southeastern part of China, in the Cathaysia block, represents 90% of the Chinese tungsten resources. This work is based on the study of the Maoping and Piaotang W-Sn hydrothermal deposits located in the Dayu district (southern Jiangxi). This thesis managed to (i) develop mineralogical and petrological tracers of ore-forming processes through detailed paragenetic sequences and geochemistry of Li-micas and shows that multiple overlapping fluids associated to several and distinct rare-metal mineralizing stages, (ii) distinguish by fluid inclusions studies that peraluminous magmatic differentiation and mixing processes are the only prequisite for the formation of these giant deposits, and (iii) develop dating approaches associated to these systems to demonstrate that the W mineralization formed at ca. 160 Ma, prior to most ages obtained on gangue minerals in the area, defining a major resetting of isotopic systems due to multiple fluid circulations around 150-155 Ma. Moreover, post-“silicate-oxide” stages have been defined for the first time and reveal the implication of peralkaline new fluid sources involved in the precipitation of Nb-Ta-Y-REE minerals at ca. 130 Ma. In the light of these results, this thesis gives new developments for in situ direct dating of ore-bearing minerals such as columbo-tantalite
|
47 |
The chemistry of iron and manganese in submarine hydrothermal systemsHudson, Andrew G January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1980. / Microfiche copy available in Archives and Science. / Bibliography: leaves 79-80. / by Andrew G. Hudson. / M.S.
|
48 |
The geology and hydrothermal alteration of the Bear Creek Butte area, Crook County, central OregonWilkening, Richard Matthew 01 January 1986 (has links)
The Eocene Clarno Formation, the Oligocene John Day Formation and basalts of the High Lava Plains are exposed in the Bear Creek Butte area in Central Oregon. In this area the Clarno Formation can be divided into a lower sequence composed of intermediate lava flows with intercalated mudflows and volcaniclastic sediments and an upper sequence of rhyolite and basalt flows and felsic ruffs. Separating the two units is a well developed saprolite. The change from intermediate to rhyolite-basalt volcanism reflects a change in the tectonic environment of the Cascade volcanic arc from compression to relaxation as subduction of the Farallon plate by the North American plate slowed, allowing extension of the continental plate margin to occur.
|
49 |
Trace element dispersion patterns around the North Silver Bell extension, Silver Bell porphyry copper deposit, Pima County, ArizonaKorkowski, Bradley John January 1982 (has links)
No description available.
|
50 |
Fluid inclusion and geological studies on the Zn-Pb-Cu vein system at Lemieux Dome, Gaspe, QuebecStevens, Kirk. January 1986 (has links)
No description available.
|
Page generated in 0.261 seconds