• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and Mutational Analyses of Aspergillus fumigatus SidA: A Flavin-Dependent N-hydroxylating Enzyme

Fedkenheuer, Michael Gerald 27 August 2012 (has links)
SidA from Aspergillus fumigatus is an N-hydroxylating monooxygenase that catalyzes the committed step in siderophore biosynthesis. This gene is essential for virulence making it an excellent drug target. In order to design an inhibitor against SidA a greater understanding of the mechanism and structure is needed. We have determined the crystal structure of SidA in complex with NADP+, Ornithine, and FAD at 1.9 ? resolution. The crystal structure has provided insight into substrate and coenzyme selectivity as well as residues essential for catalysis. In particular, we have chosen to study the interactions of Arg 279, shown to interact with the 2'phosphate of the adenine moiety of NADP+ as well as the adenine ring itself. The mutation of this residue to alanine makes the enzyme have little to no selectivity between coenzymes NADPH and NADH which supports the importance of the ionic interaction between Arg279 and the 2'phosphate. Additionally, the mutant enzyme is significantly more uncoupled than WT enzyme with NADPH. We see that the interactions of the guanadinyl group of Arg279 and the adenine ring are also important because KM and Kd values for the mutant enzyme are shifted well above those of wild type with coenzyme NADH. The data is further supported by studies on the reductive and oxidative half reactions. We have also explored the allosteric effect of L-arginine. We provide evidence that an enzyme/coenzyme/L-arginine complex is formed which improves coupling, oxygen reactivity, and reduction in SidA; however more work is needed to fully understand the role of L-arginine as an allosteric effector. / Master of Science in Life Sciences
2

Fylogenetická analýza genů pro velké podjednotky dioxygenas Rieskeho typu v půdách kontaminovaných leteckým palivem / Phylogenetic analysis of Rieske dioxygenases large subunits genes in soil contaminated with jet fuel

Ptáček, Jakub January 2010 (has links)
The former military air-base Hradcany is among the most contaminated with organic pollutants localities in Czech Republic. Main cleanup strategy in the area is the bioremediation taking advantage on the natural potential of the autochthonous soil microorganisms to evolve catabolic pathways for in situ degradation of the pollutant. The diversity and abundance of the pathways, as well as the specificity and activity of the encoded enzymes are priority biotic factors determining the bioremediation efficiency. Main task of this work was to analyze the bacterial diversity in jet fuel contaminated soils based on key catabolic genes encoding the Rieske non-haem iron dioxygenases of the toluene/ biphenyl oxygenase branch. High molecular soil DNA was extracted and the sequences encoding catabolic genes were selectively enriched by hybridization to biotinylated oligonucleotides on magnetic microbeads with covalently bound streptavidin. Fragments of the genes for the -subunits of Rieske non-haem iron oxygenases were amplified and analyzed by restriction analysis, cloning and sequencing. Their evolutionary histories were inferred using the Neighbour-Joining and the maximum likelihood methods. The catabolic genes diversity in the actively bioremediated and highly polluted soil HRB was compared with the diversity in the...
3

Structural and Mechanistic Studies on N-Hydroxylating Monooxygenases Involved in Siderophore Biosynthesis

Robinson, Reeder McNeil 22 April 2015 (has links)
N-Hydroxylating monooxygenases (NMOs) are flavin dependent enzymes that primarily catalyze the hydroxylation of L-ornithine or L-lysine. This is the first, committed step to siderophore biosynthesis. Pathogenic microbes including Aspergillus fumigatus and Mycobacterium tuberculosis secrete these low molecular weight compounds in order to uptake FeIII from their hosts for their metabolic needs when establishing infection. Therefore, members of this family of enzymes represent novel drug targets for the development of antibiotics. Here, we present the detailed functional and structural analysis of the L-ornithine monooxygenase SidA from Aspergillus fumigatus and the L-lysine monooxygenases MbsG from Mycobacterium smegmatis and NbtG from Nocardia farcinica. The detailed chemical mechanism for flavin oxidation in SidA was elucidated for formation of the C4a-hydroperoxyflavin, deprotonation of L-ornithine, and for the chemical steps of hydrogen peroxide elimination and water elimination. This was performed through a combination of kinetic isotope effect, pH, and density functional theory studies. Also, important residues involved in substrate binding and catalysis were characterized using site-directed mutagenesis for both SidA and NbtG. These include residues involved in coenzyme selectivity, substrate binding, and residues important in C4a-hydroperoxyflavin stabilization and flavin oxidation. The kinetic mechanisms of the L-lysine monooxygenases MbsG and NbtG were characterized which show unique differences with SidA. These include differences in coenzyme selectivity, and C4a-hydroperoxyflavin stabilization. Lastly, the three-dimensional structure of NbtG was solved using X-ray crystallography which is the first structure of a lysine monooxygenase. The structure shows the NADPH-binding domain is rotated ~30° relative to the FAD-binding domain which occludes NADP+ binding in NbtG. Unlike SidA, NbtG does not stabilize a C4a-hydroperoxyflavin and this occlusion observed in the structure might explain this difference. This highlights both the structural and mechanistic diversities among NMOs and the data presented here provides valuable information for the future development of specific inhibitors of NMOs. / Ph. D.
4

Study of Genes Relating To Degradation of Aromatic Compounds and Carbon Metabolism in Mycobacterium Sp. Strain KMS

Zhang, Chun 01 May 2013 (has links)
Polycyclic aromatic hydrocarbons, produced by anthropological and natural activities, are hazardous through formation of oxidative radicals and DNA adducts. Growth of Mycobacterium sp. strain KMS, isolated from a contaminated soil, on the model hydrocarbon pyrene induced specific proteins. My work extends the study of isolate KMS to the gene level to understand the pathways and regulation of pyrene utilization. Genes encoding pyrene-induced proteins were clustered on a 72 kb section on the KMS chromosome but some also were duplicated on plasmids. Skewed GC content and presence of integrase and transposase genes suggested horizontal transfer of pyrene-degrading gene islands that also were found with high conservation in five other pyrene-degrading Mycobacterium isolates. Transcript analysis found both plasmid and chromosomal genes were induced by pyrene. These processes may enhance the survival of KMS in hydrocarbon-contaminated soils when other carbon sources are limited. KMS also grew on benzoate, confirming the functionality of an operon containing genes distinct from those in other benzoate-degrading bacteria. Growth on benzoate but not on pyrene induced a gene, benA, encoding a benzoate dioxygenase α-subunit, but not the pyrene-induced nidA encoding a pyrene dioxygenase α-subunit; the differential induction correlated with differences in promoter sequences. Diauxic growth occurred when pyrene cultures were amended with benzoate or acetate, succinate, or fructose, and paralleled delayed expression of nidA. Single phase growth and normal expression of benA was observed for benzoate single and mixed cultures. The nidA promoters had potential cAMP-CRP binding sites, suggesting that cAMP could be involved in carbon repression of pyrene metabolism. Growth on benzoate and pyrene requires gluconeogenesis. Intermediary metabolism in isolate KMS involves expression from genes encoding a novel malate:quinone oxidoreductase and glyoxylate shunt enzymes. Generation of C3 structures involves transcription of genes encoding malic enzyme, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate synthase. Carbon source modified the transcription patterns for these genes. My findings are the first to show duplication of pyrene-degrading genes on the chromosome and plasmids in Mycobacterium isolates and expression from a unique benzoate-degrading operon. I clarified the routes for intermediary metabolism leading to gluconeogenesis and established a potential role for cAMP-mediated catabolite repression of pyrene utilization.
5

Study of Genes Relating To Degradation of Aromatic Compounds and Carbon Metabolism in Mycobacterium Sp. Strain KMS

Zhang, Chun 01 May 2013 (has links)
Polycyclic aromatic hydrocarbons, produced by anthropological and natural activities, are hazardous through formation of oxidative radicals and DNA adducts. Growth of Mycobacterium sp. strain KMS, isolated from a contaminated soil, on the model hydrocarbon pyrene induced specific proteins. My work extends the study of isolate KMS to the gene level to understand the pathways and regulation of pyrene utilization. Genes encoding pyrene-induced proteins were clustered on a 72 kb section on the KMS chromosome but some also were duplicated on plasmids. Skewed GC content and presence of integrase and transposase genes suggested horizontal transfer of pyrene-degrading gene islands that also were found with high conservation in five other pyrene-degrading Mycobacterium isolates. Transcript analysis found both plasmid and chromosomal genes were induced by pyrene. These processes may enhance the survival of KMS in hydrocarbon-contaminated soils when other carbon sources are limited. KMS also grew on benzoate, confirming the functionality of an operon containing genes distinct from those in other benzoate-degrading bacteria. Growth on benzoate but not on pyrene induced a gene, benA, encoding a benzoate dioxygenase α-subunit, but not the pyrene-induced nidA encoding a pyrene dioxygenase α-subunit; the differential induction correlated with differences in promoter sequences. Diauxic growth occurred when pyrene cultures were amended with benzoate or acetate, succinate, or fructose, and paralleled delayed expression of nidA. Single phase growth and normal expression of benA was observed for benzoate single and mixed cultures. The nidA promoters had potential cAMP-CRP binding sites, suggesting that cAMP could be involved in carbon repression of pyrene metabolism. Growth on benzoate and pyrene requires gluconeogenesis. Intermediary metabolism in isolate KMS involves expression from genes encoding a novel malate:quinone oxidoreductase and glyoxylate shunt enzymes. Generation of C3 structures involves transcription of genes encoding malic enzyme, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate synthase. Carbon source modified the transcription patterns for these genes. My findings are the first to show duplication of pyrene-degrading genes on the chromosome and plasmids in Mycobacterium isolates and expression from a unique benzoate-degrading operon. I clarified the routes for intermediary metabolism leading to gluconeogenesis and established a potential role for cAMP-mediated catabolite repression of pyrene utilization.
6

Exploration de la biodiversité bactérienne dans un sol pollué par les hydrocarbures : analyse par marquage isotopique du potentiel métabolique et de la dynamique des communautés impliquées dans la dégradation / Bacterial diversity exploration in hydrocarbon polluted soil : metabolic potential and degrader community evolution revealed by isotope labeling

Martin, Florence 13 October 2011 (has links)
Les hydrocarbures aromatiques polycycliques (HAP) sont des composés ubiquitaires issus de la combustion incomplète de matières organiques. Ils sont à l'origine de pollutions de l'environnement, surtout liées à l'exploitation des produits pétroliers, car ce sont des composés toxiques pour les êtres vivants et pour l'homme en particulier. De nombreuses bactéries capables de dégrader les HAP ont été isolées et étudiées, mais celles qui les dégradent in situ sont mal connues, car moins de 5% des bactéries du sol sont cultivables en laboratoire. Le premier objectif de cette étude était d'identifier les bactéries qui dégradent les HAP dans le sol par des méthodes moléculaires indépendantes de la culture. A cette fin, une stratégie de marquage isotopique in situ a été mise en œuvre qui repose sur l'utilisation du phénanthrène, un HAP à trois cycles, dans lequel l'isotope naturel du carbone a été remplacé par le 13C. Cette molécule a été introduite comme traceur dans des microcosmes contenant du sol provenant d'un bassin de rétention des eaux de ruissellement d'autoroute. Les bactéries ayant incorporé le 13C ont ensuite été identifiées par séquençage des gènes d'ARNr 16S amplifiés à partir de l'ADN marqué extrait du sol. Les résultats montrent que des Betaprotéobactéries peu étudiées à ce jour, appartenant aux genres Acidovorax, Rhodoferax, Hydrogenophaga et Thiobacillus, ainsi que des Rhodocyclaceae, étaient les principaux acteurs de la dégradation du phénanthrène. La prépondérance des Betaprotéobactéries a été établie par des mesures de PCR quantitative. Une analyse dynamique de la diversité bactérienne a montré que celle-ci changeait en fonction de la biodisponibilité du phénanthrène. En outre, la diversité d'arène-dioxygénases impliquées dans la dégradation des HAP a été explorée sur le plan phylogénétique et fonctionnel. Nous avons ainsi détecté des séquences nouvelles, pour la plupart apparentées à des dioxygénases de Sphingomonadales et de Burkholderiales. Grâce à la construction et l'expression d'enzymes hybrides, il a été possible, pour la première fois, d'associer une activité catalytique d'oxydation des HAP à des séquences partielles de gènes, amplifiées à partir de l'ADN du sol. Les résultats obtenus et les outils mis au point dans cette étude pourront servir à développer des méthodes de diagnostic et de suivi de biodégradation de polluants, par exemple dans le cadre d'opérations de bioremédiation de sites pollués par les HAP. / Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds produced by incomplete combustion of organic matter. They are a source of environmental pollution, especially associated to oil product exploitation, and represent a threat for living organisms including human beings because of their toxicity. Many bacteria capable of degrading PAHs have been isolated and studied. However, since less than 5% of soil bacteria can be cultivated in the laboratory, bacterial species able to degrade PAHs in situ have been poorly studied. The first goal of this study was to identify bacteria that degrade PAHs in soil using culture-independent molecular methods. To this end, a strategy known a stable isotope probing has been implemented based on the use of phenanthrene, a three rings PAH, in which the natural isotope of carbon was replaced by 13C. This molecule has been introduced as a tracer in microcosms containing soil from a constructed wetlands collecting contaminated water from highway runoff. Bacteria having incorporated the 13C were then identified by 16S rRNA gene sequence analysis after PCR amplification from labeled genomic DNA extracted from soil. The results show that so far little studied Betaproteobacteria, belonging to the genera Acidovorax, Rhodoferax, Hydrogenophaga and Thiobacillus, as well as Rhodocyclaceae, were the key players in phenanthrene degradation. Predominance of Betaprotéobactéries was established thanks to quantitative PCR measurements. A dynamic analysis of bacterial diversity also showed that the community structure of degraders depended on phenanthrene bioavailability. In addition, the phylogenetic diversity of ring-hydroxylating dioxygenases, enzymes involved in the first step of PAH degradation, has been explored. We detected new sequences, mostly related to dioxygenases from Sphingomonadales and Burkholderiales. For the first time, we were able to associate a catalytic activity for oxidation of PAHs to partial gene sequences amplified from soil DNA, by constructing hybrid enzymes and assaying their activity The results obtained and the tools implemented in this study may be used to develop methods for the diagnostic and monitoring of pollutant biodegradation in processes such as bioremediation of PAHs contaminated sites.

Page generated in 0.0726 seconds