• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 13
  • 13
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Differential Effects of Chronic Fluoxetine on the Behaviour of Dominant and Subordinate Naked Mole-rats

Mongillo, Daniel Luigi 05 December 2013 (has links)
Naked mole-rats are eusocial rodents that live in subterranean colonies with a strict reproductive and social hierarchy. Breeders are socially dominant and other colony members are non-reproductive subordinates. The effects of manipulating the serotonergic system on aggression are well studied in many species, but not in eusocial rodents like the naked mole-rat. For the current study, the effects of fluoxetine hydrochloride (FLX) on status-specific behaviours of subordinates (Experiment 1) and queens (Experiment 2) were evaluated both in-colony and in a social-pairing paradigm to investigate how the serotonergic system influences aggression in this species. In accordance with our main hypothesis, chronic treatment of FLX attenuated the frequency and duration of aggression in queens, but not subordinates, when paired with an unfamiliar conspecific. Further exploration of pharmacological manipulation on status-specific behaviours of this eusocial species may elucidate the neurobiological mechanisms underlying their unique and rigid social hierarchy.
12

Bioactive Compounds in the Chemical Defence of Marine Sponges : Structure-Activity Relationships and Pharmacological Targets

Hedner, Erik January 2007 (has links)
Marine invertebrates, in particular sponges, represent a source of a wide range of secondary metabolites, many of which have been attributed various defensive capabilities against environmental stress factors. In this thesis sponge-derived low-molecular peptide-like compounds and associated analogs are investigated for bioactivity and pharmacological targets. The compound bromobenzisoxazolone barettin (cyclo[(6-bromo-8-(6-bromo-benzioxazol -3(1H)-one)-8-hydroxy)tryptophan)]arginine) was isolated from the sponge Geodia barretti and its ability to inhibit larval settlement of the barnacle Balanus improvisus was determined. With an EC50 value of 15 nM, this compound’s antifouling effect was higher than those of the previously reported brominated dipeptides from Geodia barretti, i.e., barettin and 8,9-dihydrobarettin; moreover, this antifouling effect was demonstrated to be reversible. However, the compound lacked affinity for 5-HT1-7 receptors, whereas barettin possessed specific affinity to 5-HT2A, 5-HT2C and 5-HT4, while 8,9-dihydrobarettin interacted with 5-HT4. In an attempt to evaluate structure-activity relationships synthesized analogs with barettin and dipodazine scaffolds were investigated for antifouling activity. The analog benso[g]dipodazine, with an EC50 value of 34 nM, displayed the highest settlement inhibition. The studies of the structure-activity relationships of sponge-derived compounds were extended to cover analogs of agelasines and agelasimines originally isolated from sponges of the genus Agelas. Synthesized (+)-agelasine D and two structurally close analogs were investigated for cytotoxic and antibacterial activity. The profound cytotoxicity and broad spectrum antibacterial activity found prompted a further investigation of structure-activity relationships in 42 agelasine and agelasimine analogs and several characteristics that increased bioactivity were identified. In conclusion this work has produced new results regarding the potent bioactivity of compounds derived from the sponges Geodia barretti and Agelas spp. and increased SAR knowledge of the fouling inhibition, cytotoxicity and antimicrobial activity of these compounds.
13

Tardive Dyskinesia: Outcome of Antipsychotic Treatment and Brain Damage?

Kostrzewa, Richard M., Kostrzewa, John P., Brus, Ryszard 01 January 2014 (has links)
Tardive dyskinesia (TD), marked by abnormal involuntary movements and frequently expressed as perioral activity, represents an adverse outcome of prolonged antipsychotic therapy, occurring in approximately 5 % of patients per treatment year. Although neuronal mechanisms underlying TD are largely unknown, more recent experimental studies in animal models of TD are providing insight into the neuronal mechanisms associated with TD and implicating newer treatment approaches. It is now evident that a predominance in the ratio of dopamine (DA) D1:D2 receptor (R) activation accounts for induction of perioral movements in rodent models of TD, in nonhuman primate models of TD, and in humans with TD. Experimentally, TD is produced in animal models of TD, in a manner analogous to that by which TD is produced in humans - by continuous and prolonged administration of a DA D2R antagonist (i.e., an antipsychotic drug). More recently, in a rodent model of TD, it has been shown that a lesion of dopaminergic - mainly nigroneostriatal - neurons reduces the time latency for occurrence of TD, also increases the severity of perioral activity, and results in permanence of TD after complete removal of D2R antagonist treatment. The induction of perioral activity is related to DAR supersensitivity but unrelated to numbers of D2R and D2R in the neostriatum, a brain region associated with perioral activity. More apropos, serotoninergic systems are now recognized as having a greater role in effecting perioral activity, and it appears that 5-HT2C receptor antagonists are most effective in abating perioral activity in a rodent model of TD. These processes and mechanisms, topics addressed in this chapter, highlight a newer understanding of mechanisms underlying TD and provide insight into new approaches towards treatment of TD in humans.

Page generated in 0.0358 seconds