Spelling suggestions: "subject:"hypera"" "subject:"hyperarousal""
1 |
Carbonates and Other Salts in the Atacama Desert and on Mars, and the Implications for the Role of Life in Carbonate FormationHarner, Patrick Lee January 2015 (has links)
The scarcity of carbonate on Mars has been difficult to reconcile with the morphologic evidence for a wet epoch in Martian history, and has weakened early interpretations of a water-rich Noachian. Limited soil carbonate from pre-Silurian Earth has created a similar conundrum, and in both instances this paradox has likely led to overreaching interpretations about past climates. To better understand the formation of carbonate on Mars, early Earth, and in present day hyperarid climates, we examined the distribution of carbonate in the Atacama Desert—a region that spans multiple climate regimes and allows us to isolate the effects of precipitation and plant cover on soil mineralogy. To better quantify the influences of vegetation on carbonate we utilized a simple one-dimensional precipitation model and simulated carbonate formation with or without plant cover under a range of relevant climatic conditions and soil morphologies. In the Atacama we found two distinct zones with only trace (<5%) carbonate: the "absolute desert" with precipitation too low to sustain plant life, and the high Andes where precipitation was significantly higher, but where the low mean annual temperature (MAT) inhibits plants. The fog-supported, low-elevation coastal "lomas" below approximately 800 meters above sea level (masl) and the higher elevations between approximately 2500-4500 masl are variably vegetated and contain abundant carbonate within the soils. Plants increase total evapotranspiration and its distribution with depth, weathering rates, and total pCO₂. Our model results show that all of these factors increase the formation of pedogenic soil carbonate. Without the influence of vegetation the diminished carbonate that is produced is flushed through the shallow soil, where it eventually precipitates in the deep vadose zone or is entrained by groundwater.
|
2 |
The diversity of key anabolic genes in antarctic hypolithonsMakhalanyane, Thulani Peter January 2009 (has links)
>Magister Scientiae - MSc / Antarctica is known for its pristine environments. A variety of unsuitable environmental conditions were once thought to render the continent unsuitable for sustaining life. However, metagenomic data have revealed a wealth of species diversity in a range of biotopes.Hypolithons, photosynthetic communities which live under translucent rocks in climatically extreme environments, are an important input source for both carbon (C) and nitrogen (N) in this hyperarid desert environment. Microbial contribution to biogeochemical cycling resulting in fixation of both C and N remains poorly understood. Moreover, there is a reported close
interplay between both cycles, with nitrogen being reported to be a limiting factor in carbon assimilation.In this study the diversity of C and N fixing organisms was investigated by using the cbbL and nifH genes as phylogenetic and functional markers. High Molecular weight metagenomic DNA and RNA was extracted from hypolithons. PCR amplification was carried out using cbbL (800 bp for red-like, 1,100 bp for green-like) and nifH (360 bp) gene specific primers.Resultant PCR products were used to construct libraries which were screened for correct sized inserts. Restriction Fragment Length Polymorphism (RFLP) was used to de-replicate
clones prior to sequencing. Phylogenetic positions from both clone libraries were established by aligning nucleotide sequences and constructing similarity trees using NJ clustering methods.BLASTn results indicated the presence of previously uncultured organisms which contain cbbL and nifH genes. BLASTn results were characterized by low percentages of maximum identity (typically <95%), a potential indicator of novel taxa. Sequences from respective libraries clustered with cyanobacteria such as Nostoc, Scytonema, and Tolypothrix and α-, β-, and γ-Proteobacteria such as Azotobacter, Agrobacterium and Mesorhizobium. Generally
sequence results indicate a largely homogenous, being dominated by specific taxa. Each group may contain potential keystone species, essential for both biogeochemical cycling in oligotrophic environment.
|
Page generated in 0.0497 seconds