• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalizations of Ahlfors lemma and boundary behavior of analytic functions

Arman, Andrii 23 August 2013 (has links)
In this thesis we will consider and investigate the properties of analytic functions via their behavior near the boundary of the domain on which they are defined. To do that we introduce the notion of the hyperbolic distortion and the hyperbolic derivative. Classical results state that the hyperbolic derivative is bounded from above by 1, and we will consider the case when it is bounded from below by some positive constant. Boundedness from below of the hyperbolic derivative implies some nice properties of the function near the boundary. For instance Krauss & all in 2007 proved that, if the function is defined on a domain bounded by analytic curve, then boundedness from below of the hyperbolic derivative implies that the function has an analytic continuation across the boundary. We extend this result for the domains with slightly more general boundary, namely for smooth Jordan domains, and get that in this case the function and its derivative will have only continuous extensions to the boundary.
2

Generalizations of Ahlfors lemma and boundary behavior of analytic functions

Arman, Andrii 23 August 2013 (has links)
In this thesis we will consider and investigate the properties of analytic functions via their behavior near the boundary of the domain on which they are defined. To do that we introduce the notion of the hyperbolic distortion and the hyperbolic derivative. Classical results state that the hyperbolic derivative is bounded from above by 1, and we will consider the case when it is bounded from below by some positive constant. Boundedness from below of the hyperbolic derivative implies some nice properties of the function near the boundary. For instance Krauss & all in 2007 proved that, if the function is defined on a domain bounded by analytic curve, then boundedness from below of the hyperbolic derivative implies that the function has an analytic continuation across the boundary. We extend this result for the domains with slightly more general boundary, namely for smooth Jordan domains, and get that in this case the function and its derivative will have only continuous extensions to the boundary.

Page generated in 0.0932 seconds