• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genus one partitions

Yip, Martha January 2006 (has links)
We obtain a tight upper bound for the genus of a partition, and calculate the number of partitions of maximal genus. The generating series for genus zero and genus one rooted hypermonopoles is obtained in closed form by specializing the genus series for hypermaps. We discuss the connection between partitions and rooted hypermonopoles, and suggest how a generating series for genus one partitions may be obtained via the generating series for genus one rooted hypermonopoles. An involution on the poset of genus one partitions is constructed from the associated hypermonopole diagrams, showing that the poset is rank-symmetric. Also, a symmetric chain decomposition is constructed for the poset of genus one partitions, which consequently shows that it is strongly Sperner.
2

Genus one partitions

Yip, Martha January 2006 (has links)
We obtain a tight upper bound for the genus of a partition, and calculate the number of partitions of maximal genus. The generating series for genus zero and genus one rooted hypermonopoles is obtained in closed form by specializing the genus series for hypermaps. We discuss the connection between partitions and rooted hypermonopoles, and suggest how a generating series for genus one partitions may be obtained via the generating series for genus one rooted hypermonopoles. An involution on the poset of genus one partitions is constructed from the associated hypermonopole diagrams, showing that the poset is rank-symmetric. Also, a symmetric chain decomposition is constructed for the poset of genus one partitions, which consequently shows that it is strongly Sperner.

Page generated in 0.0313 seconds