• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Maximum Principle for Cauchy-Riemann Functions and Hypocomplexity

Daghighi, Abtin January 2012 (has links)
This licentiate thesis contains results on the maximum principle forCauchy–Riemann functions (CR functions) on weakly 1-concave CRmanifolds and hypocomplexity of locally integrable structures. Themaximum principle does not hold true in general for smooth CR functions,and basic counterexamples can be constructed in the presenceof strictly pseudoconvex points. We prove a maximum principle forcontinuous CR functions on smooth weakly 1-concave CR submanifolds.Because weak 1-concavity is also necessary for the maximumprinciple, a consequence is that a smooth generic CR submanifold ofCn obeys the maximum principle for continuous CR functions if andonly if it is weakly 1-concave. The proof is then generalized to embeddedweakly p-concave CR submanifolds of p-complete complexmanifolds. The second part concerns hypocomplexity and hypoanalyticstructures. We give a generalization of a known result regardingautomatic smoothness of solutions to the homogeneous problemfor the tangential CR vector fields given local holomorphic extension.This generalization ensures that a given locally integrable structureis hypocomplex at the origin if and only if it does not allow solutionsnear the origin which cannot be represented by a smooth function nearthe origin. / Uppsatsen innehåller resultat om maximumprincipen för kontinuerligaCauchy–Riemann funktioner (CR-funktioner) på svagt 1-konkava CRmångfalder,samt hypokomplexitet för lokalt integrerbara strukturer.Maximumprincipen gäller inte generellt för släta CR funktioner ochmotexempel kan konstrueras givet strängt pseudokonvexa punkter.Vi bevisar en maximumprincip för kontinuerliga CR-funktioner påsläta inbäddade svagt 1-konkava CR-mångfalder. Eftersom svagt 1-konkavitet också är nödvändigt får vi som konsekvens att för slätageneriska inbäddade CR-mångfalder i Cn gäller att maximum-principenför kontinuerliga CR-funktioner håller om och endast om CR-mångfaldenär svagt 1-konkav. Vi generaliserar satsen till svagt p-konkava CRmångfalderi p-kompletta mångfalder. Den andra delen behandlarhypokomplexitet och hypoanalytiska strukturer. Vi generaliserar enkänd sats om automatisk släthet för lösningar till de tangentiella CRekvationerna,givet existensen av lokal holomorf utvidgning. Generaliseringenger att en lokalt integrerbar struktur är hypokomplex iorigo om och endast om den inte tillåter lösningar nära origo som inteär släta nära origo. / <p>Forskning finansierad av Forskarskolan i Matematik och Beräkningsvetenskap (FMB), baserad i Uppsala.</p>
2

Regularity and uniqueness-related properties of solutions with respect to locally integrable structures

Daghighi, Abtin January 2014 (has links)
We prove that a smooth generic embedded CR submanifold of C^n obeys the maximum principle for continuous CR functions if and only if it is weakly 1-concave. The proof of the maximum principle in the original manuscript has later been generalized to embedded weakly q-concave CR submanifolds of certain complex manifolds. We give a generalization of a known result regarding automatic smoothness of solutions to the homogeneous problem for the tangential CR vector fields given local holomorphic extension. This generalization ensures that a given locally integrable structure is hypocomplex at the origin if and only if it does not allow solutions near the origin which cannot be represented by a smooth function near the origin. We give a sufficient condition under which it holds true that if a smooth CR function f on a smooth generic embedded CR submanifold, M, of C^n, vanishes to infinite order along a C^infty-smooth curve  \gamma in M, then f vanishes on an M-neighborhood of \gamma. We prove a local maximum principle for certain locally integrable structures. / <p>Funding  by FMB, based at Uppsala University.</p>

Page generated in 0.0474 seconds