• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monotonicity methods for Mean-Field Games

Tada, Teruo 22 November 2021 (has links)
Mean-field games (MFGs) model the behavior of large populations of rational agents. Each agent seeks to minimize an individual cost that depends on the statistical distribution of the population. Roughly speaking, MFGs are given by the limit of differential games with N agents as N goes to infinity. This limit describes an average effect of the population’s behavior. Instead of modeling large systems for all agents, we consider two coupled equations: the Hamilton–Jacobi equation and the Fokker–Planck equation. A solution to MFGs is given by two functions: a value function and a population density. From the point of view of mathematics, monotonicity conditions for MFGs are a natural way to obtain the uniqueness of solutions and the stability of systems. In this thesis, we develop a new framework to establish the existence of solutions to MFGs through monotonicity. First, we study first-order stationary monotone MFGs with Dirichlet boundary conditions. In MFGs, boundary conditions arise when agents can leave the domain. There are exit costs for agents given by Dirichlet boundary conditions. Here, we establish the existence of solutions to MFGs that fulfill those boundary conditions in the trace sense. In particular, our solution is continuous up to the boundary in the one-dimensional case. Second, we consider time-dependent monotone MFGs with space-periodic boundary conditions. To solve the time-dependent monotone MFG, we introduce a mono- tone high-order regularized elliptic problem in Rn+1, although the original MFG is a parabolic type. To preserve monotonicity, we need to determine the specific boundary conditions for the time variable. Then, we can apply our method of stationary MFGs to this regularization. In particular, we prove that a solution to the problem exists for any terminal time. Third, we investigate stationary MFGs with hypoelliptic operators that are degenerate differential operators. Those models arise from stochastic control problems with the Stratonovich integration. We study a hypoelliptic MFG with the standard quadratic Hamiltonian. Under standard assumptions, although there is no uniform elliptic condition in hypoelliptic operators, we verify that there is a unique solution to our hypoelliptic MFG.
2

Some properties of solutions to weakly hypoelliptic equations

Bär, Christian January 2012 (has links)
A linear differential operator L is called weakly hypoelliptic if any local solution u of Lu = 0 is smooth. We allow for systems, i.e. the coefficients may be matrices, not necessarily of square size. This is a huge class of important operators which covers all elliptic, overdetermined elliptic, subelliptic and parabolic equations. We extend several classical theorems from complex analysis to solutions of any weakly hypoelliptic equation: the Montel theorem providing convergent subsequences, the Vitali theorem ensuring convergence of a given sequence, and Riemann's first removable singularity theorem. In the case of constant coefficients we show that Liouville's theorem holds, any bounded solution must be constant and any L^p solution must vanish.
3

Extensions, cohomologie cyclique et théorie de l'indice / Extensions, cyclic cohomology and index theory

Rodsphon, Rudy 03 November 2014 (has links)
Le théorème de l'indice d'Atiyah et Singer, démontré en 1963, est un résultat qui a permis de relier des thématiques mathématiques variées, allant des équations aux dérivées partielles a la topologie et la géométrie différentielle. Plus précisément, il fait le lien entre la dimension de l'espace des solutions d'une équation aux dérivées partielles elliptique et des invariants topologiques du type (co)homologie, et a des applications importantes, regroupant plusieurs théorèmes majeurs venant de divers domaines (géométrie algébrique, topologie différentielle, analyse fonctionnelle). D'un autre cote, les fonctions zêta associées à des opérateurs pseudo différentiels sur une variété riemannienne close contiennent dans leurs propriétés analytiques des informations intéressantes. On peut par exemple retrouver dans les résidus le théorème de Weyl sur l asymptotique du nombre de valeurs propres d'un laplacien, et en particulier le volume de la variété. En se plaçant dans le cadre de la géométrie différentielle non commutative développée par Connes, on peut pousser cette idée plus loin. Plus précisément, on peut obtenir, en combinant des techniques de renormalisation zêta avec la propriété d'excision en cohomologie cyclique, des théorèmes d'indice dans l'esprit de celui d'Atiyah-Singer. L'intérêt de ce point de vue réside dans sa généralisation possible à des situations géométriques plus délicates. La présente thèse établit des résultats dans cette direction / The index theorem of Atiyah and Singer, discovered in 1963, is a striking result which relates many different fields in mathematics going from the analysis of partial differential equations to differential topology and geometry. To be more precise, this theorem relates the dimension of the space of some elliptic partial differential equations and topological invariants coming from (co)homology theories, and has important applications. Many major results from different fields (algebraic topology, differential topology, functional analysis) may be seen as corollaries of this result, or obtained from techniques developed in the framework of index theory. On another side, zeta functions associated to pseudodifferential operators on a closed Riemannian manifold contain in their analytic properties many interesting informations. For instance, the Weyl theorem on the asymptotic number of eigenvalues of a Laplacian may be recovered within the residues of the zeta function. This gives in particular the volume of the manifold, which is a geometric data. Using the framework of noncommutative geometry developed by Connes, this idea may be pushed further, yielding index theorems in the spirit of the one of Atiyah Singer. The interest in this viewpoint is to be suitable for more delicate geometrical situations. The present thesis establishes results in this direction

Page generated in 0.0982 seconds