• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Integrated Machine Iron Loss Estimation Scheme based on Steel Magnetizing Characteristics and Emulated Standard Test Circuit

Lin, Hsiu-Ying 15 August 2012 (has links)
The objective of this thesis is to provide a reliable and effective iron loss estimation scheme for the electromagnetic steel products in the design and on-line operation stages. To investigate the possible performance of electromagnetic steel products, proper iron loss information of the products that are constructed by different steels is one of the key concerns. Along with the various power electronic device applications and iron core structures, the magnetic fluxes flowing through the machine cores will be non-uniform and include harmonic terms. Unless excessive computation efforts in expensive software tools are performed, large discrepancies will be exhibited the estimated and actual values of machine iron losses. To overcome these drawbacks, a rational machine iron loss estimation scheme is proposed. By adopting the iterative magnetic equivalent circuits and the nonlinear magnetic characteristics of the electromagnetic steels, the preliminary operational flux information in the machine is first obtained, and then a numerical Epstein Frame test circuit with magnetizing inductance modeled by Preisach model is applied. With appropriate circuit input voltages devised from preliminary information, the detailed hysteresis inner-loop characteristics resulting from product structures and magnetization harmonics can be properly modeled. Based on the circuit results, the iron losses of electric machines with any operation can be rationally evaluated, and a valuable reference in machine designing can be provided.

Page generated in 0.3772 seconds