• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 288
  • 162
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 455
  • 225
  • 186
  • 150
  • 137
  • 89
  • 75
  • 69
  • 63
  • 58
  • 48
  • 47
  • 45
  • 44
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Numerical Modelling of Unreinforced Masonry Infill Walls under Seismic Load Considering In-Plane / Out-Of-Plane Interaction

Longo, Francesco January 2016 (has links)
Many studies and post-earthquake investigations have recognized that masonry infill walls play a major role in the seismic response of structures. Although their effect may be beneficial in some situations, the walls are also susceptible to high levels of damage, including collapse that can be life-threatening because of the heavy debris. Despite the critical importance of infill walls for life safety, infill walls are often neglected in numerical models and analyses implemented by designers because they are traditionally considered to be non-structural elements. Moreover, the majority of experimental studies and numerical models include only the in-plane behaviour of the panels: indeed, until recently, only sophisticated micro-models incorporated the out-of-plane response of unreinforced masonry infill walls. Recently, however, researchers have started to advance proposals for simplified macro-models that are capable of modelling in-plane/out-of-plane interaction, paving the way for the consideration of the associated issues in design practice. However, very few studies have applied these models to the dynamic seismic response history analysis of realistic structures. In this context, this thesis focuses on the numerical modelling of unreinforced masonry (URM) infill walls, with particular attention to the combined in-plane/out-of-plane response of panels in reinforced concrete (RC) frame buildings during seismic events. In the first part of this research, existing studies for URM masonry infill walls are reviewed, with an emphasis on the out-of-plane response of the panels. Significant experimental tests, modeling strategies and post-earthquake surveys are presented, stressing the parameters that influence the behaviour of the infills. An in-depth description is dedicated to the infill wall macro-model that is adopted for the analyses performed in this work, emphasizing its capabilities and limitations. This model consists of a single diagonal formed by two beam elements representing the wall; lumped modal mass is concentrated at the midpoint node of the diagonal. In-plane axial force and out-of-plane bending of the equivalent element interact by means of two fibre sections located adjacent to the central node. User defined domains limit axial/bending strengths and in-plane/out-of-plane ultimate displacements of the wall. When the response of an element exceeds these domains, the model simulates the collapse of this infill wall by removing it from the analysis. Next, the numerical model is calibrated in the OpenSees software framework by comparing existing experimental results with numerical outputs. The laboratory tests comprise in-plane cyclic and out-of-plane quasi-static results on 1-bay and 1-storey frame specimens with two different types of clay URM infill walls that are frequently found in Italian and other Mediterranean countries. The calibrated model is then applied to the static pushover analysis of a set of planar frames, while the wall elements are simultaneously loaded in both orthogonal directions. The nucleus of present study is the application of the calibrated model to the dynamic response history analysis of planar RC frames. Frame dimensions, number of stories, design and infill configurations are selected to be representative of the Italian building stock. Acceleration time histories consist of a suite of a bidirectional ground motions that are scaled to be compatible with Eurocode 8 elastic spectra. Cracking and collapse of the infill walls are monitored during the analysis. The infill walls reach their ultimate displacement capacity by a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. The intensity of seismic load that is required to fail the infill walls, as well as the patterns of failure, are shown to be consistent with observed damage to URM infill walls in similar buildings during recent earthquakes. This research suggests that simplified macro-elements are suitable for design-oriented models of URM infill walls in RC framed structures, capturing the critical interaction between in-plane and out-of-plane response of the infill walls but without making the models excessively complex.
342

Bifurcations and instability in non-linear elastic solids with interfaces

Bordignon, Nicola January 2018 (has links)
The study of local and global instability and bifurcation phenomena is crucial for many engineering applications in the field of solid mechanics. In particular, interfaces within solid bodies are of great importance in the bifurcation analysis, as they constitute localized zones in which discontinuities or jumps in displacement, strain or stress may occur. Different instability phenomena, heavily conditioned by the presence of interfaces, were analyzed in the present thesis. The first phenomenon that has been considered is the propagation of a shear band, which is a localized shear deformation developing in a ductile material. This shear band, assumed to be already present inside of a ductile matrix material (obeying von Mises plasticity with linear hardening), is modelled as a discontinuity interface following two different approaches. In the first approach, the conditions describing the behavior of a layer of material in which localized strain develop are introduced and implemented in a finite element computer code. A shear deformation is simulated by imposing appropriate displacement conditions on the boundaries of the matrix material, in which the shear band is present and modelled through an imperfect interface, having null thickness. The second approach is based on a perturbative technique, developed for a J2-deformation theory material, in which the shear band is modeled as the emergence of a discontinuity surface for displacements at a certain stage of a uniform deformation process, restricted to plane strain conditions. Both the approaches concur in showing that shear bands (differently from cracks) propagate rectilinearly under shear loading and that a strong stress concentration is expected to be present at the tip of the shear band, two key features in the understanding of failure mechanisms of ductile materials [results of this study have been reported in (Bordignon et al. 2015)]. The second type of interface analyzed in the present thesis is a perfectly frictionless sliding interface, subject to large deformations and assumed to be present within a uniformly strained nonlinear elastic solid. This type of interface may model lubricated sliding contact between soft solids, a topic of interest in biomechanics and for the design of small-scale engineering devices. The analyzed problem is posed as follows. Two elastic nonlinear solids are considered jointed through a frictionless and bilateral surface, so that continuity of the normal component of the Cauchy traction holds across the surface, but the tangential component is null. Moreover, the displacement can develop only in a way that the bodies in contact do neither detach, nor overlap. Surprisingly, this finite strain problem has not been correctly formulated until now, so that this formulation has been developed in the thesis. The incremental equations are shown to be non-trivial and different from previously (and erroneously) employed conditions. In particular, an exclusion condition for bifurcation is derived to show that previous formulations based on frictionless contact or ‘spring-type’ interfacial conditions are not able to predict bifurcations in tension, while experiments (one of which, ad hoc designed, is reported) show that these bifurcations are a reality and can be predicted when the correct sliding interface model is used. Therefore, the presented approach introduces a methodology for the determination of bifurcations and instabilities occurring during lubricated sliding between soft bodies in contact [results of this study have been reported in (Bigoni et al. 2018)].
343

Dynamic interaction between shear bands

Giarola, Diana January 2019 (has links)
A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J_2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which takes account of the singularity at the shear band tips and permits the analysis of an incident wave impinging on a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band. Moreover, the approach is generalised to study the interaction of multiple shear bands showing that it may lead to resonance and corresponding growth of shear bands, but also to their annihilation. At the same time, multiple scattering may bring about focusing or, conversely, shielding from waves. Due to the difficulties inherent to the experimental analysis of time-harmonic dynamics of shear bands, the proposed mechanical model represents the only practical possibility of analyzing the fine micromechanisms governing material collapse and discloses the complex interplay between dynamics and shear band growth or arrest.
344

Sustainable landfilling of municipal solid waste

Limoli, Alice January 2019 (has links)
The deposition of waste in a landfill can be a threat to the environment and human health; in spite of their potential pollution, landfill are still of grate use for the residual municipal solid waste, thus efficient and cost effective technologies need to be studied in order to minimize aqueous and gaseous emissions. The present work focuses on the evaluation of the remediation of old landfill sites that pollutes groundwater and on the determination of a new pre-treatment of fresh waste upstream of landfilling. First the biosparging technology has been applied to remediate an aquifer polluted by leachate. The biosparging stimulates the growth of indigenous bacteria able to convert pollutants, such as ammonium nitrogen, in harmless compounds. The technology shows high efficiency in ammonium nitrogen removal via nitrification processes. The biosparging remediation technology prevents the mobilization of metals and removes the nitrates produced in the nitrification process when the organic carbon source is conveniently dosed. The application of the biosparging on site has proven to be feasible. The Solidification/Stabilization (S/S) technology is a pre-landfill waste treatment process, which has been used for different types of hazardous wastes since it has a proved efficiency on heavy metal immobilization. The S/S process uses chemically reactive formulations that, together with the water, form stable solids; it also insolubilizes, immobilizes, encapsulates, destroys, sorbs, or otherwise interacts with selected waste components. The S/S process improves the physical characteristics of the waste and reduces the mobility of the hazardous compounds, thus the waste leaches less contaminants into the environment. The result of this process is a less hazardous solid. The experimental evidences proved that this technology reduces volumes used for landfilling and inhibits the methanogenesis blocking greenhouse gases emissions. The reduced permeability and the leaching test results show that the leachate produced is of a smaller amount and less polluted. The enhanced mechanical properties and the reduced emissions both in bodies of water and atmosphere have proven the worth of this technology. Therefore an alternative waste treatment plant involving S/S pre-treatment is proposed.
345

Enabling modeling framework with surrogate modeling capabilities and complex networks

Serafin, Francesco January 2019 (has links)
Conceptual and physically based environmental simulation models as products of research environments efforts became complex software over time in order to allow describing the behaviour of natural phenomena more accurately. Results from these models are considered accurate but often require to operate an entire system of modeling resources with dedicated knowledge, an extensive set up, and sometimes significant computational time. Model complexity limits wide model adaptation among consultants because of lower available technical resources and capabilities. However, models should be ubiquitous to use in both research and consulting environments. This dissertation aims to address and alleviate two aspects of research model complexity: 1) for researchers, the model design complexity with respect to its internal software structure and 2) for consultants, the model application complexity with respect to data and parameter setup, runtime requirements, and proper model infrastructure setup. The first contribution provides modeling design and implementation support by managing interacting modeling solutions as “Directed Acyclic Graph”, while the second one helps to create surrogate models of complex physical models as a streamlined process. Both contributions are implemented within the OMS/CSIP modeling framework and infrastructure and were applied in various studies. First, a machine learning (ML)-based surrogate model approach is presented to respond to field application requirements to get quick but “accurate enough” model results with limited input and limited a-priori knowledge of the internal physical processes involved. The surrogate model aims to capture the behaviour of a physical model as an ensemble system of artificial neural networks (ANN). Here, the NeuroEvolution of Augmenting Topology (NEAT) technique has been leveraged because of its integration of a genetic approach to build and evolve its ANNs during supervised training. Throughout this phase, the thorough design of the services facilitate seamless monitoring of structural mutations of the artificial neural network and its performances with respect to behavioural emulation of the original model response. This results in a streamlined surrogate model generation. Furthermore, the stochasticity inherent to the evolutionary genetic algorithm combined with a specially designed cross-validation approach allows for straightforward use of the ensemble application. Several, slightly different artificial neural networks are concurrently trained. The ensemble system is built upon the selection of the utmost performant surrogate models and is used collectively to provide uncertainty quantified results when applied against new data. Secondly, a Directed Acyclic Graph (DAG) modeling structure NET3 was developed. NET3 provides appropriate data structures to represent modeling states interactions as relationships based on network topologies. The inherent structure of the DAG commands the execution of modeling tasks. NET3 implicitly manages the parallel computation depending on the network topology. A node of a NET3 modeling structure encapsulates any sort of modeling solution such as a system of ordinary differential equations, a set of statistical rules, or a system of partial differential equations. Each link connects these modeling solutions by handling their data flow. As a result, NET3 simplifies 1) the translation of physical mathematical concepts into model components, and 2) the management of complex interactions of modeling solutions. NET3 also pushes forward the idea of separating concerns between software architecture and scientific model codebase. It manages aspects that relate to the architectural design of the graph modeling structure and lets research scientist focus on their model’s domain. NET3 improves encapsulation and reusability of scientific/mathematical concepts. It avoids code duplication by allowing the same modeling solution to be adopted in different nodes and finely adapted to specific requirements. In summary, NET3 enables a new level of modeling flexibility by allowing to quickly change model representations to explore new modeling solutions. The two presented contributions were integrated into the Object Modeling System/Cloud Services Integrated Platform (OMS/CSIP) environmental modeling framework (EMF). EMFs are standard practice in environmental modeling because they represent a software solution of separating the burden of software architectural design management from scientific research. Here, OMS/CSIP has been identified “advanced” in terms of EMFs design. It offers high flexibility, low language invasiveness, fine and thorough architectural design, and innovative cloud computing deployment infrastructure. These aspects make OMS/CSIP infrastructure the suitable platform to host NEAT based surrogate modeling and NET3 extensions. Framework-enabled NEAT based Surrogate modeling (FeNS) results from the full integration of NEAT based surrogate modeling approach with OMS/CSIP platform. Here, the surrogate model approach was developed as CSIP services to help transitioning from research models to “field models” by enabling the modeling framework to interact with CSIP services, ML libraries, and a NoSQL database to emerge model surrogates for a(ny) modelling solution. OMS/CSIP was extended to harvest data from each model run and automatically derive the surrogate model at the modeling framework level. NET3 extends OMS modeling simulations to run as a graph network of interconnected modeling solutions. Furthermore, it enhances available OMS calibration algorithms to become multi-site calibration procedures. OMS already provided implicit parallel computation of independent components in a modeling solution. NET3 now adds a further layer of implicit parallelism by concurrently running independent modeling solutions. Two studies were carried out to develop and test FeSN while three applications supported the development and testing of NET3. Surrogate models of the Revised Universal Soil Loss Equation, Version 2 (R2) were generated to scale up from simple test cases with a constrained input space to more generic applications including a larger variety of input parameters. The main goal of the surrogate model was to streamline and simplify access to the R2 model behaviour. We performed sensitivity analysis of R2 to limit the input space to only relevant parameters (e.g. soil properties, climate parameter, field geometries, crop rotation description). The main study area was the State of Iowa starting from a single county (Clay county) ending up to four counties (Buena Vista, Cherokee, Clay, and Wright). Clustering methodologies were applied to improve surrogate model accuracy and to accelerate the training process by reducing the dataset size. The overall “goodness-of-fit” against the testing dataset estimated on the median of the uncertainty quantified result of the surrogate models ensemble was always above 0.95 Nash-Sutcliffe (NS), root mean squared error (RMSE) between 0.13 and 0.36, and bias between -0.07 and 0.02. In many cases, accuracy of the surrogate model with respect to testing dataset was above 0.98 NS. Surrogate models of the AgroEcoSystem (AgES) were generated to apply and test FeNS methodology to a semi-distributed hydrologic model. The main goal of the surrogate model was to streamline and simplify access to the AgES model behaviour. Only relevant lumped parameters on watershed centroid were used to train the surrogate models and limit the input space to only relevant parameters (e.g. precipitation, groundwater level, LAI, and potential evapotranspiration). The main study area was the South Fork Iowa River (SFIR) watershed in the State of Iowa across Wright, Franklin, Hamilton, and Hardin counties. The overall “goodness-of-fit” against the testing dataset estimated on the median of the uncertainty quantified result of the surrogate models ensemble was above 0.97 Nash-Sutcliffe (NS), root mean squared error (RMSE) of 2.24, and bias of -0.0794. With respect to NET3, the first application is the real-time modeling of flood forecasting through GEOframe system for the Civil Protection of Regione Basilicata implemented by PhD Bancheri. To scale the computation and finely tune calibration parameters, the Basilicata river basins were split into subcatchments where each was represented by a different NET3 node. The second application was part of Mr. Dalla Torre’s master thesis where the computational core of the rainfall-runoff model of Storm Water Management Model (SWMM by EPA) was componentized. NET3 now allows for reimplementing a concise and lightweight SWMM modeling core and highly parallel model runs. Software architectural design of rainfall-runoff, routing and sewer pipe design components targeted separation of concerns, single responsibility, and encapsulation principles. It resulted in clean and minimized code base. NET3 manages component connections and scalable computation by hosting rainfall-runoff modeling solution into separated nodes from routing and sewer pipe design modeling solution. It also enables each node of the modeling structure to 1) access a shared data structure to fetch input data from and push results to (SWMMobject), and 2) internally analyze the upstream subtree in order to adjust sewer pipe design parameters. The third test case is the application of a “system of systems” of urban models where each node of the graph modeling structure encapsulates a single responsibility system of models. Because of the stochasticity involved in each system of models, the entire graph modeling solution was required to run several times and generate independent realizations. Hence, NET3 was enabled to run a “graph of graphs” modeling structure.
346

Flutter instability in structural mechanics: theory and experimental evidence

Tommasini, Mirko January 2018 (has links)
The present thesis summarizes the research activity in the field of elastic structures subject to tangential follower forces performed in the Instability Lab of the University of Trento. Elastic structures loaded by nonconservative positional forces are interesting from different perspectives. First, they are subject to flutter instability, a dynamical instability which remains undetected using static approaches. Second, in these structures dissipation plays a fundamental and destabilizing role. Third, a critical load calculated in the limit of vanishing dissipation is found to be smaller than the critical load calculated in the same structure where the dissipation is assumed absent 'from the beginning'. This behaviour is so peculiar that is usually referred to as 'the Ziegler paradox' and was never experimentally substantiated before. Flutter instability in elastic structures subject to follower load, the most important cases being the famous Beck's and PflÃ1⁄4ger's columns (two elastic rods in a cantilever configuration, with an additional concentrated mass at the end of the rod in the latter case), have attracted, and still attract, a thorough research interest. In the present thesis, the effects of internal and external damping, crucial in the interpretation of experiments, have been investigated. Contrary to a common belief, it has been shown that the effect of external damping is qualitatively the same as the effect of internal damping, both yielding a pronounced destabilization paradox. This result corrects previous claims relative to destabilization by external damping of the Ziegler's and PflÃ1⁄4ger's elastic structures. The major challenge in the research area of follower forces is the practical realization of these forces, which was previously obtained only for the case of the Ziegler double pendulum (a two-degrees-of-freedom elastic system subject to a tangential force). Therefore, an experimental setup to introduce follower tangential forces at the end of an elastic rod was designed, realized, validated, and tested, in which the follower action is produced by exploiting Coulomb friction on an element (a freely-rotating wheel) in sliding contact against a plate (realized by a conveyor belt). It is therefore shown that follower forces can be realized in practice and the first experimental evidence is given of the flutter and divergence instability of the PflÃ1⁄4ger's column. Load thresholds for both the two instabilities are measured for the first time. Moreover, the detrimental effect of dissipation on the critical load for flutter is experimentally demonstrated. The introduced approach to follower forces discloses new horizons for testing self-oscillating structures and for exploring and documenting dynamic instabilities possible when nonconservative loads are applied.
347

Smart Landscape. The architecture of the micro smart grid" as a resilience strategy for landscape"

Garbarini, Giulia January 2018 (has links)
“Smart Landscape”, starting from energy devices for the management and distribution of electricity resources, tends to define a possible vision of landscape. The main structure and process are based on the architecture of a “micro smart grid”, which is generally associated with urban energy grids and districts, but may become a figurative reference for new forms of landscape, such as “Smart Landscape”. The output of the research would be to show how the main strategies of “Smart Landscape” and its development could be applied in different context. The outcomes deriving from the theoretical framework and case study prototypes are: strategy (Interoperability and Accountability), structure (smart grid), and process (main case study). The prototype is the island of Venice Lido, to which the concept and structure of the “micro smart grid” would be applied, trying to follow analyses and pilot projects aimed at creating a research project called “L.I.D.O. – Venice: Learning Island Design Opportunities – Venezia. Sustainable scenarios for Venice Lido”. Smart Landscape is a reflection on development of an urban and landscape design typology linked to the changes brought by the continuous evolution of technologies and the increasingly pressing need for resilience of anthropized contexts, and not only.
348

Analysis and development of nonlinear Finite Elements for modelling steel structures at ambient and elevated temperature

Morbioli, Andrea January 2017 (has links)
This thesis work aims to successively analyze and develop "ex novo" problems concerning the use of finite elements for the analysis of issues characterized by high plasticity, geometrical and material nonlinearity, large displacements and rotations; all combined with the effect of temperature on the material mechanical properties. The ultimate objective of the work is the analysis and development of nonlinear Finite Elements devoted to the modelling of steel structures at ambient and elevated temperature. Three different experiences will be analyzed in this elaborate; each of them characterised by specific issues that may be involved in the analysis via finite element method of steel structures at ambient and elevated temperature. At the same time innovative aspects that are related, for example, to the particular typology of the analyzed case study (first case) or in the methodology used in the treatment of the problem (second and third case) are investigated. The thesis structure chronologically retraces this path and the results and the experience gained from each of them were exploited to ultimately implement a thermomechanical finite element that is expression of all the tackled problems. The thesis consists of a collection of three papers that have been published or submitted on each of the investigated topics. In detail: - In the first paper, a commercial finite-element code, of the type "multipurpose", such as ANSYS has been used for the analysis of innovative cold-formed, laterallyrestrained steel rectangular hollow flange beams subjected to monotonic bending test. The numerical analysis has been carried out by means of the direct comparison with experimental tests on real scale specimens; that has allowed the detection of some phenomenological problems that have been included in the model calibration. From a numerical point of view, this work has at first allowed to deeply investigate the plastic problem by means, for example, the appropriate identification of the constitutive laws for the material, the correct choice of hardening law and yield surface, and their impact on the model. The local buckling problem typical of these profiles has been evaluated, through the use of shell elements. Furthermore, the effect of the global and local imperfections, which have been introduced in the model with different amplitudes, has been deeply investigated by evaluating their effect on the ultimate load. The calibration of the model finally allowed to perform a series of parametric analyses in order to extend the results to an extended range of profiles, characterized by different slenderness. - In the second paper, the thermal problem has been introduced with the support of a finite element software, designed specifically for thermomechanical analysis (SAFIR). The case study is, in this case, based on a multi-storey steel-concrete composite open car park subjected to localized fire of vehicles. With this study, not only the plastic problem has been analyzed but also phenomena such as the effect of high geometrical nonlinearity and large displacements on the structure in addition to the temperature effect on materials mechanical properties. The case study has been used to evaluate the assumptions and the issues that arise when developing an innovative integrated modelling methodology between a computational fluid dynamics (CFD) software applied to compartment fires and a finite element (FE) software applied to structural systems. Particular emphasis has been given to the weak coupling approach developed between the CFD code fire dynamics simulator (FDS) and the FE software SAFIR. - In the third and last paper all the experiences obtained from the previous works have been focused on the implementation, inside the MATLAB environment, of a thermomechanical beam finite element based on the co-rotational beam theory for the analysis of two-dimensional frames heated under high temperature and subjected to plastic deformation and to the effect of geometrical nonlinearity. The finite element is mainly aimed at the study of steel structures, with double-symmetrical profiles such as IPE or HE cross sections, and could then be used as a modelling tool for typical frames subjected to thermal actions. The element implements both Euler-Bernoulli and Timoshenko beam theories and can analyse slender to moderately stocky structures. A co-rotational formulation was used for describing the beam kinematic. The degradation of the steel mechanical properties at high temperature according to the Eurocode 1993-1-2 was considered by integrating the material constitutive law based on a predetermined temperature field in the cross section. An improved displacement predictor for estimating the displacement field at the beginning of each time step was successfully implemented and allowed to significantly decrease the computational time. Furthermore, advanced path-following methods that detect secondary equilibrium paths owing to instability occurrence were implemented in order to analyse the elasticplastic post-buckling behaviour of compressed steel elements at high temperature without the need of introducing geometrical imperfections. In order to show the potential of the developed finite element by highlighting the practical implications, a parametric analysis was performed to show whether the element could reproduce the EN1993-1-2 buckling curve. Validation against experimental and numerical data obtained with commercial software like ABAQUS and SAFIR is thoroughly shown in the paper.
349

Theory of Decision Based on Structural Health Monitoring

Cappello, Carlo January 2017 (has links)
The average age of strategic constructions in the Western world is becoming higher and higher. Many of these structures need inspection, maintenance or replacement, resulting in significant costs. The accurate estimate of structural condition can make operators optimize the allocation of resources. Nowadays, the progress of technology and machine learning has made structural health monitoring appealing to the agencies that manage important structures. This has encouraged the research community in the study of new structural health monitoring methods. In spite of this, the use of monitoring data is often disregarded by practitioners, who still prefer to gather more information and then act based on experience. Similarly, unlike the design of civil structures, the design of structural health monitoring systems is carried out based on heuristics rather than on rigorous evaluations of the expected monitoring system effectiveness. In this doctoral thesis, I apply expected utility theory for the development of decision support systems to be used in structural health monitoring and I develop a procedure for the design of structural health monitoring systems that follows the scheme of semi-probabilistic structural design. The use of monitoring data in a decision support system that implements expected utility theory financially optimizes the management of civil structures. The proposed monitoring system design method enables practitioners to design monitoring systems using their experience and guarantees that the installation of a monitoring solution is financially convenient. I present the mathematical formulation for monitoring-based decision support systems and monitoring system design. Then, I propose the numerical algorithms for the development of monitoring-based decision support systems and solutions for monitoring data analysis. Finally, the proposed methods are applied to three case studies, which enabled me to discuss the application in real life and the hypotheses. The applications show also the feasibility of the proposed approaches and test the numerical algorithms.
350

Homogenization and analysis of hydrological time series

Marcolini, Giorgia January 2017 (has links)
In hydrological studies, it is very important to properly analyze the relationship among the different components of the water cycle, due to the complex feedback mechanisms typical of this system. The analysis of available time series is hence a fundamental step, which has to be performed before any modeling activity. Moreover, time series analysis can shed light over the spatial and temporal dynamics of correlated hydrological and climatological processes. In this work, we focus on three tools applied for time series analysis: homogeneity tests, wavelet analysis and copula analysis. Homogeneity tests allow to identify a first important kind of variability in the time series, which is not due to climate nor seasonal variability. Testing for inhomogeneities is therefore an important step that should be always performed on a time series before using it for any application. The homogenization of snow depth data, in particular, is a challenging task. Up to now, it has been performed analyzing available metadata, which often present contradictions and are rarely complete. In this work, we present a procedure to test the homogeneity of snow depth time series based on the Standard Normal Homogeneity Test (SNHT). The performance of the SNHT for the detection of inhomogeneities in snow depth data is further investigated with a comparison experiment, in which a dataset of snow depth time series relative to Austrian stations has been analyzed with both the SNHT and the HOMOP algorithm. The intercomparison study indicates that the two algorithms show comparable performance. The wavelet transform analysis allows to obtain a different kind of information about the variability of a time series. In fact, it determines the different frequency content of a signal in different time intervals. Moreover, the wavelet coherence analysis allows to identify periods where two time series are correlated and their phase shift. We apply the wavelet transform to a dataset of snow depth time series of stations distributed in the Adige catchment and on a dataset of 16 discharge time series located in the Adige and in the Inn catchments. The same datasets are used to perform a wavelet coherence analysis considering the Mediterranean Oscillation Index (MOI) and the North Atlantic Oscillation Index (NAOI). This analysis highlights a difference in the behavior of the snow time series collected below and above 1650 m a.s.l.. We also observe a difference between low and high elevation sites in the amount of mean seasonal snow depth and snow cover duration. More interestingly, snow time series collected at different elevations respond differently to temperature and more in general to climate changes. The wavelet analysis allows us also to distinguish between gauging stations belonging to different catchments, while the wavelet coherence analysis revealed non-stationary correlations with the MOI and NAOI, indicating a very complex relation between the measured quantities and climatic indexes. Finally the application of copulas allows modeling the marginal of each variable and their dependence structure independently. We apply this technique to two relevant cases. First we study snow related variables in relation with temperature, the NAOI and the MOI, which we already investigated with the wavelet coherence analysis. Then we model flood events registered at two stations of the Inn river: Wasserburg and Passau. This last analysis is performed with the goal of predicting future flood events and derive construction parameters for retention basins. We test three different combinations of variables (direct peak discharge-direct volume, direct peak discharge-direct volume-rising time-base flow, direct peak discharge-direct volume-rising time-moving threshold) describing the flood events and compare the results. The consistency in the results indicates that the proposed methodology is robust and reliable. This study shows the importance of approaching the analysis to hydrological time series from several points of view: quality of the data, variability of the time series and relation between different variables. Moreover, it shows that integrating the use of various time series analysis methods can greatly improve our understanding of the system behavior.

Page generated in 0.0869 seconds