1 |
Physical processes in Antarctic landfast sea iceCrocker, Gregory Bruce January 1988 (has links)
No description available.
|
2 |
Geophysical and numerical modelling investigations of the ice caps in Severnaya ZemlyaBassford, Robin Paul January 2002 (has links)
No description available.
|
3 |
Identifying fast glacier flow : the sedimentological and micromorphological signature of surges and ice streamsLeighton, Iain Douglas Leighton January 2013 (has links)
No description available.
|
4 |
Computational Ice Dynamics and Hydraulics : Towards a Coupling in the Ice Sheet Code ARCTIC-TARAHHolmgren, Hanna January 2012 (has links)
Numerical ice sheet modeling is a rather young discipline: it started in the 1950s. The "first generation" models developed at that time are currently being replaced by "new generations" ones, such as e.g. ARCTIC-TARAH. ARCTIC-TARAH is a Bert Bolin Center for Climate Research spin-off from the Pennsylvania State University Ice sheet model (PSUI). When the Bolin Center received PSUI for subsequent independent development and adaption of the code to Arctic settings in 2010, an initial inspection of the source code suggested that PSUI also contained a module that allows for the treatment of glacial hydraulics. A numerical ice sheet model including coupling of ice dynamics and hydraulics is an extremely important tool in testing new hypotheses of former geological events. E.g., based on the recent finding that Arctic Ocean sediments contain a very distinct signature, it has been suggested that ice dammed lakes at the south-eastern margin of the late Weichselian Eurasian ice sheet drained into the Arctic Ocean in a catastrophic event around 55.000 years ago. The aim of this thesis is to perform a reconnaissance analysis of the glacio-hydraulic algorithms in ARCTIC-TARAH, as "inherited" (but never with published record of functionality) from PSUI. The work is carried out in two steps: first the routines and algorithms describing the hydraulics are located and explored, and then these routines are tested and verified by performing experiment simulations. The investigation of the program code reveals the presence of two hydraulics related modules in ARCTIC-TARAH. The main tasks of the module Water are to initiate lakes and oceans and to adjust hydrostatic pressure in each lake. Further, with the module Move Water activated, transportation of water (e.g. in rivers) is possible. Results from idealized experiment simulations verify the functionality of the routines in the module Water. An in-depth analysis of the module Move Water suggests that there is a mismatch in time units when solving the equations describing flow of water. Experiment simulations also support this flaw detected in the flow model. Preliminary adjustments were made to the source code of the module Move Water, which made it possible to simulate the transportation of water both under an ice sheet and in rivers on land. However, these adjustments do not solve the problem of mismatching time scales, and the numerical solutions obtained from the experiments were observed to be unstable and, therefore, possibly incorrect. To be able to perform more advanced simulations in support of the above mentioned hypothesis, the flow model in the module Move Water needs to be improved or replaced. One solution to the problem with mismatching time scales, could be to use a so called multiscale solution in time.
|
5 |
Connections Between the Mass Balance, Ice Dynamics, and Hypsometry of White Glacier, Axel Heiberg Island, NunavutThomson, Laura Irene January 2016 (has links)
This thesis investigates how changing climate conditions have impacted the mass balance, dynamics and associated hypsometry (area-elevation distribution) of White Glacier, an alpine glacier on Axel Heiberg Island, Nunavut.
The first article describes the production of a new map of White Glacier from which changes in ice thickness and glacier hypsometry could be determined. A new digital elevation model (DEM) was created using >400 oblique air photos and Structure from Motion, a method built upon photogrammetry but with the advantage of automated image correlation analysis. The result of this work demonstrates that the method is able to overcome the challenges of optical remote sensing in snow-covered areas. The resulting DEM and orthoimage facilitated the production of a map with 5 m vertical accuracy in the style of earlier cartographic works.
The new map supported the calculation of the glacier’s geodetic mass balance and provides an updated glacier hypsometry, which improves the accuracy of mass balance calculations. A modeled glacier hypsometry time-series was created to support a reanalysis of the mass balance record over the period 1960-2014, which through comparison of the geodetic and glaciological methods enables the detection of potential sources of error in the glaciological method. Comparison of the two approaches reveals that within the error margin no significant difference exists between the average annual glaciological mass balance (-213 ± 28 mm w.e. a 1) and geodetic mass balance ( 178 ± 16 mm w.e. a-1).
To determine how ice dynamics have responded to ice thinning and negative mass balances, dual-frequency GPS observations of ice motion were compared to historic velocity measurements collected at three cross-sectional profiles along the glacier. Comparisons of annual and seasonal velocities indicate velocity decreases of 10–45% since the 1960s. However, increased summer velocities at the highest station suggests that increased delivery of surface meltwater to the glacier bed has initiated basal sliding at elevations that did not experience high levels of melt in earlier decades. Modeled balance fluxes demonstrate that observed fluxes, both historically and currently, are unsustainable under current climate conditions.
|
6 |
Physical and chemical properties of ice in a main valley glacier and a tributary glacier, Gornergletscher, Canton Valais, SwitzerlandQuick, Annika M. 08 July 2010 (has links) (PDF)
Glacier models often fail to incorporate the geometry and/or physical properties of tributaries included in complex glaciers. Tributary glaciers have different source areas and flow conditions than the adjacent main valley glacier. Ice cores (~3m depth) and surface samples (<0.5m depth) were collected from Grenzgletscher (main valley glacier) and Zwillingsgletscher (tributary glacier) in the Gornergletscher system of the Swiss Alps. Stable water isotopes indicate seasonal variation, showing 1-2 annual layers. The mean d18O for Grenzgletscher is ~4.8‰ lower than for Zwillingsgletscher. This difference may be accounted for in part by elevation differences between the accumulation areas (~1.1‰ δ18O), increased avalanching in Grenzgletscher (~1.8 ‰ δ18O), and by varying climatic conditions at the time of precipitation (~0.9-1.4‰ variation in δ18O). Using a kinematic ice flow model, core ages were estimated using effective annual layer thickness (based on seasonal variations), annual accumulation rate and ice thickness. The Grenzgletscher core is ~4 years older than the Zwillingsgletscher core. Based on ages and flow distances, the tributary has a lower flow velocity (63-87 m/yr) compared to Grenzgletscher (61-134 m/yr). To understand thermal properties of the tributary, a 775 m GPR survey (200 MHz) was conducted along a flow line of Zwillingsgletscher. Topographic waves (ogives) observed on the surface are mimicked by the onset of reflectivity 10-20 m below the surface. Reflective regions are interpreted as warmer ice at the pressure melting point, overlain by colder ice. This thermal structure is likely related to acceleration through an ice fall. Since most tributary glaciers include ice falls, thermal properties of tributary glaciers may be different from those of the main valley glacier. The properties and geometry of tributary glaciers are significantly different from main valley glaciers and should therefore be incorporated into glacier models in the future.
|
7 |
Parallelization of the HIROMB ocean modelWilhelmsson, Tomas January 2002 (has links)
No description available.
|
8 |
Velocity Variations of the Kaskawulsh Glacier, Yukon Territory, 2009-2011Darling, Samantha 16 November 2012 (has links)
Laser altimetry and satellite gravity surveys indicate that the St Elias Icefields are currently losing mass and are among the largest non-polar sea level contributors in the world. However, a poor understanding of glacier dynamics in the region is a major hurdle in evaluating regional variations in ice motion and the relationship between changing surface conditions and ice flux. This study combines in-situ dGPS measurements and advanced Radarsat-2 (RS-2) processing techniques to determine daily and seasonal ice velocities for the Kaskawulsh Glacier from summer 2009 to summer 2011. Three permanent dGPS stations were installed along the centreline of the glacier in 2009, with an additional permanent station on the South Arm in 2010. The Precise Point Positioning (PPP) method is used to process the dGPS data using high accuracy orbital reconstruction. RS-2 imagery was acquired on a 24-day cycle from January to March 2010, and from October to March 2010-2011 in a combination of ultra-fine and fine beam modes.
Seasonal velocity regimes are readily identifiable in the dGPS results, with distinct variations in both horizontal velocity and vertical motion. The Spring Regime consists of an annual peak in horizontal velocity that corresponds closely with the onset of the melt season and progresses up-glacier, following the onset of melt at each station. The Summer Regime sees variable horizontal velocity and vertical uplift, superimposed on a long-term decline in motion. The Fall Regime sees a gradual slowing at all stations with little variation in horizontal velocity or vertical position. Rapid but short accelerations lasting up to 10 days were seen in the Winter regimes in both 2010 and 2011, occurring at various times throughout each regime. These events initiated at the Upper Station and progress down-glacier at propagation speeds up to 16,380 m day-1 and were accompanied by vertical uplift lasting for similar periods. Three velocity maps, one from the winter of 2010 and two from the fall/winter of 2011, produced from speckle tracking were validated by comparison with dGPS velocity, surface flow direction, and bedrock areas of zero motion, with an average velocity error of 2.0% and average difference in orientation of 4.3º.
|
9 |
Basal Dynamics and Internal Structure of Ice SheetsWolovick, Michael Joseph January 2015 (has links)
The internal structure of ice sheets reflects the history of flow and deformation experienced by the ice mass. Flow and deformation are controlled by processes occurring within the ice mass and at its boundaries, including surface accumulation or ablation, ice rheology, basal topography, basal sliding, and basal melting or freezing. The internal structure and basal environment of ice sheets is studied with ice-penetrating radar. Recently, radar observations in Greenland and Antarctica have imaged large englacial structures rising from near the bed that deform the overlying stratigraphy into anticlines, synclines, and overturned folds. The mechanisms that may produce these structures include basal freeze-on, travelling slippery patches at the ice base, and rheological contrasts within the ice column.
In this thesis, I explore the setting and mechanisms that produce large basal stratigraphic structures inside ice sheets. First, I use radar data to map subglacial hydrologic networks that deliver meltwater uphill towards freeze-on structures in East Antarctica. Next, I use a thermomechanical flowline model to demonstrate that trains of alternating slippery and sticky patches can form underneath ice sheets and travel downstream over time. The disturbances to the ice flow field produced by these travelling patches produce stratigraphic folds resembling the observations. I then examine the overturned folds produced by a single travelling sticky patch using a kinematic flowline model. This model is used to interpret
stratigraphic measurements in terms of the dynamic properties of basal slip. Finally, I use a simple local one-dimensional model to estimate the thickness of basal freeze-on that can be produced based on the supply of available meltwater, the thermal boundary conditions, ice sheet geometry, and the ice flow regime.
|
10 |
Glaciomarine sedimentation at the continental margin of Prydz Bay, East Antarctica : implications on palaeoenvironmental changes during the QuaternaryBorchers, Andreas January 2010 (has links)
The Antarctic plays an important role in the global climate system. On the one hand, the Antarctic Ice Sheet is the largest freshwater reservoir on Earth. On the other hand, a major proportion of the global bottom-water formation takes place in Antarctic shelf regions, forcing the global thermohaline circulation.
The main goal of this dissertation is to provide new insights into the dynamics and stability of the EAIS during the Quaternary. Additionally, variations in the activity of bottom-water formation and their causes are investigated. The dissertation is a German contribution to the International Polar Year 2007/ 2008 and was funded by the ‘Deutsche Forschungsgesellschaft’ (DFG) within the scope of priority program 1158 ‘Antarctic research with comparative studies in Arctic ice regions’.
During RV Polarstern expedition ANT-XXIII/9, glaciomarine sediments were recovered from the Prydz Bay-Kerguelen region. Prydz Bay is a key region for the study of East EAIS dynamics, as 16% of the EAIS are drained through the Lambert Glacier into the bay. Thereby, the glacier transports sediment into Prydz Bay which is then further distributed by calving icebergs or by current transport. The scientific approach of this dissertation is the reconstruction of past glaciomarine environments to infer on the response of the Lambert Glacier-Amery Ice Shelf system to climate shifts during the Quaternary. To characterize the depositional setting, sedimentological methods are used and statistical analyses are applied. Mineralogical and (bio)geochemical methods provide a means to reconstruct sediment provenances and to provide evidence on changes in the primary production in the surface water column. Age-depth models were constructed based on palaeomagnetic and palaeointensity measurements, diatom stratigraphy and radiocarbon dating.
Sea-bed surface sediments in the investigation area show distinct variations in terms of their clay minerals and heavy-mineral assemblages. Considerable differences in the mineralogical composition of surface sediments are determined on the continental shelf. Clay minerals as well as heavy minerals provide useful parameters to differentiate between sediments which originated from erosion of crystalline rocks and sediments originating from Permo-Triassic deposits. Consequently, mineralogical parameters can be used to reconstruct the provenance of current-transported and ice-rafted material.
The investigated sediment cores cover the time intervals of the last 1.4 Ma (continental slope) and the last 12.8 cal. ka BP (MacRobertson shelf). The sediment deposits were mainly influenced by glacial and oceanographic processes and further by biological activity (continental shelf), meltwater input and possibly gravitational transport.
Sediments from the continental slope document two major deglacial events: the first deglaciation is associated with the mid-Pleistocene warming recognized around the Antarctic. In Prydz Bay, the Lambert Glacier-Amery Ice Shelf retreated far to the south and high biogenic productivity commenced or biogenic remains were better preserved due to increased sedimentation rates. Thereafter, stable glacial conditions continued until 400 - 500 ka BP. Calving of icebergs was restricted to the western part of the Lambert Glacier. The deeper bathymetry in this area allows for floating ice shelf even during times of decreased sea-level. Between 400 - 500 ka BP and the last interglacial (marine isotope stage 5) the glacier was more dynamic. During or shortly after the last interglacial the LAIS retreated again due to sea-level rise of 6 - 9 m. Both deglacial events correlate with a reduction in the thickness of ice masses in the Prince Charles Mountains. It indicates that a disintegration of the Amery Ice Shelf possibly led to increased drainage of ice masses from the Prydz Bay hinterland. A new end-member modelling algorithm was successfully applied on sediments from the MacRobertson shelf used to unmix the sand grain size fractions sorted by current activity and ice transport, respectively. Ice retreat on MacRobertson Shelf commenced 12.8 cal. ka BP and ended around 5.5 cal. ka BP. During the Holocene, strong fluctuations of the bottomwater activity were observed, probably related to variations of sea-ice formation in the Cape Darnley polynya. Increased activity of bottom-water flow was reconstructed at transitions from warm to cool conditions, whereas bottom-water activity receded during the mid- Holocene climate optimum.
It can be concluded that the Lambert Glacier-Amery Ice Shelf system was relatively stable in terms of climate variations during the Quaternary. In contrast, bottom-water formation due to polynya activity was very sensitive to changes in atmospheric forcing and should gain more attention in future research. / Die Antarktis spielt im globalen Umweltsystem eine tragende Rolle. Mit ihrem mächtigen Eispanzer ist sie nicht nur der größte Süsswasserspeicher auf der Erde, in ihren Schelfregionen wird auch ein Großteil der globalen Bodenwassermassen gebildet, welche die globale thermohaline Zirkulation antreiben.
Hauptziel dieser Arbeit, welche einen deutschen Beitrag zum Internationalen Polarjahr 2007/ 2008 liefert, war es, neue Erkenntnisse hinsichtlich der Stabilität des Ostantarktischen Eisschildes während des Quartärs zu liefern. Weiterhin sollten Aussagen über Variationen in der Bildung von Antarktischem Bodenwasser und deren Ursachen getroffen werden. Dazu wurde im Rahmen der ‚Polarstern‘ Expedition ANT-XXIII/9 eine Beprobung glaziomariner Sedimente zwischen Prydz Bucht und Kerguelen Plateau durchgeführt. Diese Region eignet sich zur Untersuchung der Ostantarktischen Eisdynamik besonders gut, da hier der Lambert Gletscher, etwa 16% des Ostantarktischen Eispanzers drainiert. Er transportiert dabei Sediment nach Norden, das schließlich die Prydz Bucht erreicht und durch direkten Transport über kalbende Eisberge oder durch Umlagerung und Verteilung mithilfe von Meeresströmungen weiter verfrachtet wird.
Der wissenschaftliche Ansatz dieser Arbeit besteht darin, über die Verteilung dieser Sedimente in Raum und Zeit, d.h. über Variationen des glaziomarinen Paläoregimes, die Reaktion des Lambert Gletschers und des vorgelagerten Amery Schelfeises auf Klimaschwankungen während des Quartärs zu rekonstruieren. Dabei werden sowohl sedimentologische Methoden unter Einbeziehung neuer statistischer Möglichkeiten angewandt, um Sedimentationsprozesse zu charakterisieren, als auch mineralogische und (bio)geochemische Parameter verwendet, um Aussagen über die Herkunft der Sedimente und Änderungen in der Produktivität im Oberflächenwasser treffen zu können. Die Altersbestimmung der Sedimentkerne erfolgte mittels Paläomagnetik, Paläointensitäten, Biostratigraphie und Radiokarbondatierungen.
Die Oberflächensedimente im Untersuchungsgebiet zeigen deutliche Unterschiede sowohl hinsichtlich ihrer Tonmineral- als auch Schwermineralzusammensetzung. Beide mineralogischen Parameter zeigen die größten Differerenzen auf dem Schelf. Dort lassen sich deutlich Sedimente der Prydz Bucht von Sedimenten des MacRobertson Shelfes differenzieren. Sie stellen daher ein gutes Hilfsmittel dar, um sowohl die Herkunft von eis- als auch strömungstransportiertem Material zu rekonstruieren. Die untersuchten Sedimentkerne decken den Zeitraum der letzten 1,4 Millionen Jahre (Kontinentalhang) bzw. der letzten 12,8 tausend kal. Jahre v. H. ab (MacRobertson Schelf). Die abgelagerten Sedimente wurden i. W. durch glaziale und ozeanographische Einflüsse geprägt, aber auch durch Bioproduktion (Schelf) bzw. durch Schmelzwassereinträge und möglicherweise gravitative Prozesse (Kontinentalhang).
In den Sedimenten des Kontinentalhangs sind zwei starke Enteisungsereignisse überliefert: Das erste Ereignis steht mit dem mittelpleistozänen Klimaoptimum in Verbindung, das auch in anderen antarktischen Regionen nachgewiesen wurde. Es führte in der Prydz Bucht zu einem weitreichenden Rückzug des Lambert Gletscher-Amery Schelfeises (LAIS) und gleichzeitig zu einer hohen Primärproduktion. Danach herrschten bis etwa 400 - 500 tausend Jahre v. H. stabile glaziale Bedingungen. Kalbung von Eisbergen war wahrscheinlich auf den westlichen Teil des Lambert Gletschers begrenzt, wo eine tiefere Bathymetrie auch bei niedrigerem globalen Meeresspiegel noch Aufschwimmen des Gletschereises erlaubt. Zwischen 400 - 500 tausend Jahren v. H. und vermutlich dem letzten Interglazial wurde der Gletscher schließlich wieder dynamischer, um mit oder kurz nach dem letzten Interglazial (Meeresspiegel etwa 6 - 9 m höher) eine weitere Phase deutlichen Rückzuges zu durchlaufen. Beide Ereignisse lassen sich mit Phasen der Eisreduktion in den Prinz Charles Bergen korrelieren, d.h. der Rückzug des Lambert Gletschers hatte möglicherweise ein erhöhtes Nachfließen von Eismassen aus dem Hinterland zur Folge. An den Sedimenten des Schelfkernes wurde ein neu entwickeltes Verfahren der Endmember-Modellierung erfolgreich getestet. Der Eisrückzug auf dem MacRobertson Schelf begann etwa 12,8 tausend kal. Jahre v. H. und war gegen 5,5 tausend kal. Jahre v. H. abgeschlossen. Während des Holozäns kam es zu starken Schwankungen in der Bodenwasseraktivität, die höchst wahrscheinlich mit der Neubildungsrate von Meereis in der Kap Darnley Polynia in Zusammenhang stehen. Besonders auffallend war eine erhöhte Bodenwasseraktivität am Übergang von Warm- zu Kaltphasen bzw. ihr extremer Rückgang während des Mittel-Holozänen Klimaoptimums.
Insgesamt zeigen die Ergebnisse der Arbeit, dass sich das LAIS während des Quartärs relativ stabil gegenüber Klimaveränderungen verhalten hat. Die Bodenwasserproduktion in Polynien dagegen reagierte sehr empfindlich auf relative geringe atmosphärische Veränderungen und bedarf in Zukunft verstärkter Aufmerksamkeit.
|
Page generated in 0.0735 seconds