• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling the effects of climate change on ice dynamics at Kangerlussuaq Glacier, Greenland

Barnett, Jamie January 2021 (has links)
A consequence of climate change is rising global sea levels, predicted to bring increased socio-economic and environmental impacts to coastal communities. The Greenland Ice Sheet has become a prominent contributor to rising sea levels, a consequence of the Arctic warming at twice the rate of the global average. Mass loss from the ice sheet is separated between changes in surface mass balance and ice discharge at marine terminating outlet glaciers, with the later dominating mass loss over the past fifty years. While advances in ice sheet modelling have provided greater clarity on Greenland’s future mass loss, there remains inefficiencies in modelling the response of outlet glaciers in Greenland’s fjords. This thesis aims to provide greater insight into behaviour of Kangerlussuaq Glacier, SE Greenland, by employing a 2D flowline model to understand the processes governing ice dynamics and to explore how the glacier may respond to a warming climate. Results indicate that the presence of a winter ice mélange is the principle dictator of Kangerlussuaq Glacier’s behaviour and likely protects against further retreat towards a reverse sloped section of bedrock. However, if such a retreat does materialise, then large overdeepenings in Kangerlussuaq Fjord raise the spectre of uncontrollable retreat and excessive mass loss.

Page generated in 0.0707 seconds