1 |
GEOCHEMISTRY OF THERMALLY ALTERED COALS AND ORGANIC-RICH SHALES: THE IMPACT OF RAPID HEATING ON PHYSICAL AND CHEMICAL PROPERTIES OF ORGANIC MATTERRahman, Mohammad W. 01 August 2014 (has links)
Igneous intrusion can change the geochemical and petrographic properties of sedimentary organic matter (such as coals and organic-rich clays or shales) including vitrinite reflectance, maceral petrographic composition, mineralogy, stable isotope composition, trace element composition, and bulk geochemistry. Igneous intrusions into coals and organic-rich rocks may have contributed to global warming in the geologic past by causing the release of greenhouse gases. Evidence for the release of large amounts of thermogenic CH4 from the organics would include significant;13Corg enrichment in the residual organic matter. However, 13Corg of thermally altered organic matter in coals and shales adjacent to intrusions often show negative shifts and, in some cases, ambiguous or positive trends. Previous studies have evaluated 13Corg of bulk samples rather than that of individual components, or macerals. As different macerals have different isotopic compositions, maceral-specific trends may be masked by variations in maceral composition of the whole-coal samples. It is important to explain the evolution of different geochemical and petrographic signatures in coals, coals macerals, and organic-rich sedimentary rocks close to an intrusion. This study evaluates the following three hypotheses: (1) thermally altered coals show different geochemical trends compared with coals that have undergone normal burial maturation; (2) if a large-scale release of 13C-depleted thermogenic CH4 resulted from intrusion of the coal, then it should have produced 13C-enriched coal and vitrinite macerals (the most abundant components of the coal) adjacent to the intrusion due to the release of light gases; and (3) 13Corg gets heavier with the increase in heat alteration approaching an intrusion due to the release of isotopically light gases. The current study reports petrographic, bulk geochemical (proximate, and ultimate), 13Corg data (whole-coal/shale samples and vitrinite macerals separated via density-gradient centrifugation, (DGC)), density data (vitrinite macerals), and Rock-Eval pyrolysis data for occurrences of thermally altered Springfield (No. 5) Coal (Pennsylvanian), Danville (No. 7) Coal (Pennsylvanian), and an organic-rich shale in the southern part of the Illinois Basin. Petrographic analysis shows an increase in vitrinite reflectance (Rm) from background levels of 0.55% up to ~4.80% in the Springfield (No. 5) Coal, 0.66% to 4.40% in the Danville (No. 7) Coal, and 0.71% to 4.78% for organic-rich shale; a loss of liptinite macerals, formation of isotropic coke and, at the intrusion contact, even development of fine-grained mosaic anisotropic coke texture. Volatile matter (VM) content decreases and fixed carbon (FC) content, ash, and mineral matter increase approaching the coal/intrusion contact. Carbon increases whereas nitrogen, hydrogen, and oxygen decrease approaching the intrusions. The presence of carbonate minerals (confirmed by X-ray diffraction and petrographic analysis) has a significant impact on proximate and ultimate data. However, even after removal of carbonates, trends for VM vs. vitrinite reflectance, %C vs. Rm, and H vs. C do not follow typical trends associated with normal burial coalification. Approaching the contacts, free oil content (S1), remaining hydrocarbon potential (S2), carbon dioxide from pyrolysis of the organic matter (S3), and hydrogen (HI) and oxygen (OI) indices decrease whereas thermal maturity (Tmax, ⁰C) increases. In addition, HI vs. VM, S2 vs. Rm, and Tmax vs. Rm diverge from pathways seen in previous studies. Trends in most of the Rock-Eval parameters in the organic-rich shale studied here are less clear due to the degree of variation in organic matter content, but a clear increase in thermal maturity (Tmax, C) is seen. There are no significant changes in 13Corg in the whole-coal samples (WCM) of the Springfield (No. 5) Coal (-25.28 / to -24.88 /), Danville (No. 7) whole coals (-25.37 / to -24.76 /), and in the DGC-separated vitrinites (-25.33 / to -24.96 /) of the Springfield (No. 5) Coal approaching the intrusion. However, the organic-rich shale transect shows a 1.31 / positive shift in 13C (from -25.06 / to -23.87 /) approaching the intrusion. DGC-separated vitrinite densities range from 1.268 g/mL in the unaltered coal to 1.523 g/mL at the coal/intrusion contact. For the vitrinite concentrates, density shows a clear correlation with Rm, %Cdaf, Hdaf, H/C, TOC, and 13Corg. These geochemical data suggest that these coals may have followed a different maturation track because of the geologically rapid heating associated with the intrusive event. It is also suggested here that the natural coke textures produced by such rapid geological heating may differ from those observed for metallurgical cokes produced under standard industrial coking conditions. Typically, in an industrial coke oven, a coal of this initial rank (Ro = ~ 0.6%) would produce an isotropic coke, rather than the fine-grained circular anisotropic coke seen here. The development of this texture may reflect differences due to heating rates or, alternatively, may indicate "pre-heating" of the coal during the intrusion event. Changes in the isotopic signatures are not of a magnitude that would be expected if significant thermogenic CH4 had been generated by the intrusive event. Moreover, there is no petrographic evidence for condensed or immobilized thermal products due to rapid pyrolysis (12C-rich pyrolytic carbon) close to the intrusion. These geochemical and petrographic data suggest there was only minimal CH4 generation associated with the rapid heating of the coals and organic-rich sedimentary rocks by the intrusion. In addition, there is no evidence for 13C-depleted condensed gas or pyrolytic carbon at the intrusion contact that could have moderated the isotopic signature. These data agree with previously reported data from this laboratory (Rahman et al., 2014, in review) and others (Gröcke et al., 2009; Yoksoulian, 2010) that indicate no clear evidence for large-scale CH4 generation due to the rapid heating or igneous intrusion in coals or sedimentary rocks.
|
2 |
Mechanisms and Timing of Pluton Emplacement in Taranaki Basin, New Zealand Using Three-Dimensional Seismic AnalysisCammans, Phillip C 01 October 2015 (has links) (PDF)
Several off-shore volcano-plutonic complexes are imaged in detail in the Parihaka 3D seismic survey in the Taranaki Basin of New Zealand. Three intrusions were analyzed for this study. Part of the Mohakatino Volcanic Centre (15 to 1.6 Ma), these intrusions have steep sides, no resolvable base reflectors, no internal stratification or structure, and they exhibit doming and faulting in the sedimentary strata above the intrusions. Deformation along the sides is dominated by highly attenuated, dipping strata with dips of 45° or higher that decrease rapidly away from the intrusions. Doming extends several hundred meters from the margins and produced many high-angle normal faults and thinned strata. The intrusions lie near normal faults with the Northern Intrusion lying directly adjacent to a segment of the Parihaka Fault. The Central Intrusion has localized normal faults cutting a graben in the area directly above the intrusion and extending in a NE-SW direction away from it. The Western Intrusion is near the western edge of the Parihaka 3D dataset and is not situated directly adjacent to extensional faults.Two distinct zones of intrusion-related faults developed around both the Northern and Central Intrusions representing two different stress regimes present during emplacement, a local stress field created by the intrusions during emplacement and the regional stress field. The deeper zones contain short radial faults that extend away from the intrusion in all directions, representing a local stress field. The shallower faults have a radial pattern above the apex of each intrusion, but farther from it, they follow the regional stress field and trend NE. Using our techniques to interpret radial faulting above both intrusions and the principal of cross-cutting relations, timing of emplacement for these intrusions are 3.5 Ma for the Northern Intrusion and between 5 and 4 Ma for the Central and Western Intrusions.Observed space-making mechanisms for the Northern and Central Intrusions include doming (~16% and 11%, respectively), thinning and extension of roof strata (~4% for both), and extension within the basin itself (29% and 12%). Stoping and floor subsidence may have occurred, but are not visible in the seismic images. Magmatic extension may have played a significant role in emplacement.Several gas-rich zones are also imaged within the seismic data near the sea-floor. They appear as areas of acoustic impedance reversal compared to surrounding sedimentary strata and have a reversal of amplitude when compared to the sea floor. The gas in these zones is either biogenic or sourced from deeper reservoirs cut by normal faults.
|
3 |
Three-Dimensional Seismic Study of Pluton Emplacement, Offshore Northwestern New ZealandLuke, Jason Allen 22 February 2012 (has links) (PDF)
Detailed 3D seismic images of a volcano-plutonic complex offshore northwestern New Zealand indicate the intrusive complex lies in a relay zone between NE-trending en echelon normal faults. A series of high angle normal faults fan out from the margin of the Southern Intrusive Complex and cut the folded strata along the margin. These faults terminate against the margins of the intrusion, extend as much as 1 pluton diameter away from the margin, and then merge with regional faults that are part of the Northern Taranaki Graben. Offset along these faults is on the order of 10s to over 100 meters. Strata on top of the complex are thinned and deformed into a faulted dome with an amplitude of about 0.7 km. Steep dip-slip faults form a semi-radial pattern in the roof rocks, but are strongly controlled by the regional stress field as many of the faults are sub-parallel to those that form the Northern Taranaki Graben. The longest roof faults are about the same length as the diameter of the pluton and cut through approximately 0.7 km of overlying strata. Fault offset gradually diminishes vertically away from the top of the intrusion. The Southern Intrusive Complex is a composite intrusion and formed from multiple steep-sided intrusions as evidenced by the complex margins and multiple apophyses. Small sills are apparent along the margins and near the roof of the Southern complex. Multiple episodes of deformation are also indicated by a series of unconformities in the sedimentary strata around the complex. Two large igneous bodies make up the composite intrusion as evidenced by the GeoAnomaly body detection tool. The Southern Intrusive Complex has a resolvable volume of 277 km3. Room for the complex was made by multiple space-making mechanisms. Roof uplift created ~3% of the space needed. Compaction/porosity loss is estimated to have contributed 20-40% of the space needed. Assimilation may have created ~0-30% space. Extension played a major role in creating the space needed and is estimated to have created a minimum of 33% of the space. Floor subsidence and stoping may have occurred, but are not resolvable in the seismic survey.
|
Page generated in 0.0928 seconds