1 |
Localização baseada em odometria visual / Localization based on visual odometryNishitani, André Toshio Nogueira 26 June 2015 (has links)
O problema da localização consiste em estimar a posição de um robô com relação a algum referencial externo e é parte essencial de sistemas de navegação de robôs e veículos autônomos. A localização baseada em odometria visual destaca-se em relação a odometria de encoders na obtenção da rotação e direção do movimento do robô. Esse tipo de abordagem é também uma escolha atrativa para sistemas de controle de veículos autônomos em ambientes urbanos, onde a informação visual é necessária para a extração de informações semânticas de placas, semáforos e outras sinalizações. Neste contexto este trabalho propõe o desenvolvimento de um sistema de odometria visual utilizando informação visual de uma câmera monocular baseado em reconstrução 3D para estimar o posicionamento do veículo. O problema da escala absoluta, inerente ao uso de câmeras monoculares, é resolvido utilizando um conhecimento prévio da relação métrica entre os pontos da imagem e pontos do mundo em um mesmo plano. / The localization problem consists of estimating the position of the robot with regards to some external reference and it is an essential part of robots and autonomous vehicles navigation systems. Localization based on visual odometry, compared to encoder based odometry, stands out at the estimation of rotation and direction of the movement. This kind of approach is an interesting choice for vehicle control systems in urban environment, where the visual information is mandatory for the extraction of semantic information contained in the street signs and marks. In this context this project propose the development of a visual odometry system based on structure from motion using visual information acquired from a monocular camera to estimate the vehicle pose. The absolute scale problem, inherent with the use of monocular cameras, is achieved using som previous known information regarding the metric relation between image points and points lying on a same world plane.
|
2 |
Image AlignmentWagner, Katharina 11 August 2009 (has links) (PDF)
Aligning two images by point to point correspondence is a hard optimization problem. It
can be solved using t-Extremal Optimization or with a modification of this method called
Fitness threshold accepting. In this work these two methods are tested and compared to
see whether one of the methods should be preferred for image alignment. Since real image
data is almost always noisy the performance of the methods under conditions like noisy and
outlying data is analyzed too.
|
3 |
Non-rigid image alignment for object recognition / Alignement élastique d’images pour la reconnaissance d’objetDuchenne, Olivier 29 November 2012 (has links)
La vision permet aux animaux de recueillir une information riche et détaillée sur leur environnent proche ou lointain. Les machines ont aussi accès à cette information riche via leurs caméras. Mais, elles n'ont pas encore le logiciel adéquat leur permettant de la traiter pour transformer les valeurs brutes des pixels de l'image en information plus utile telle que la nature, la position, et la fonction des objets environnants. Voilà une des raisons pour laquelle il leur est difficile de se mouvoir dans un environnement inconnu, et d'interagir avec les humains ou du matériel dans des scénarios non-planifiés. Cependant, la conception de ce logiciel comporte de multiples défis. Parmi ceux-ci, il est difficile de comparer deux images entre elles, par exemple, afin que la machine puisse reconnaître que ce qu'elle voit est similaire à une image qu'elle a déjà vue et identifiée. Une des raisons de cette difficulté est que la machine ne sait pas, a priori, quelles parties des deux images se correspondent, et ne sait donc pas quoi comparer avec quoi. Cette thèse s'attaque à ce problème et propose une série d'algorithmes permettant de trouver les parties correspondantes entre plusieurs images, ou en d'autre terme d'aligner les images. La première méthode proposée permet d'apparier ces parties de manière cohérente en prenant en compte les interactions entre plus de deux d'entre elles. Le deuxième algorithme proposé applique avec succès une méthode d'alignement pour déterminer la catégorie d'un objet centré dans une image. Le troisième est optimisé pour la vitesse et tente de détecter un objet d'une catégorie donné où qu'il soit dans l'image. / Seeing allows animals and people alike to gather information from a distance, often with high spatial and temporal resolution. Machines have access to this rich pool of information thanks to their cameras. But, they still do not have the software to process it, in order to transform the raw pixel values into useful information such as nature, position, and function of the surrounding objects. That is one of the reasons why it is still difficult for them to naviguate in an unknown environment and interract with people and objects in an un-planned fashion. However, the design of such a software implies many challenges. Among them, it is hard to compare two images, for insance, in order to recognize that the seen image is similar to another which has been previously seen and identified. One of the difficulties here is that the software cannot know --a priori-- which parts of the two images match. So, it cannot know which parts it should compare. This thesis tackles that problem, and presents a set of algorithm to find correspondences in images, or in other words, to align them. The first proposed method match parts in images, in a coherent fachion, taking into account higher order interactions between more than to of them. The second proposed algorithm apply with success alignment technique to discover the category of an object centered in an image. The third one is optimized for speed and try to detect objects of a given category, which can be anywhere in an image.
|
4 |
Localização baseada em odometria visual / Localization based on visual odometryAndré Toshio Nogueira Nishitani 26 June 2015 (has links)
O problema da localização consiste em estimar a posição de um robô com relação a algum referencial externo e é parte essencial de sistemas de navegação de robôs e veículos autônomos. A localização baseada em odometria visual destaca-se em relação a odometria de encoders na obtenção da rotação e direção do movimento do robô. Esse tipo de abordagem é também uma escolha atrativa para sistemas de controle de veículos autônomos em ambientes urbanos, onde a informação visual é necessária para a extração de informações semânticas de placas, semáforos e outras sinalizações. Neste contexto este trabalho propõe o desenvolvimento de um sistema de odometria visual utilizando informação visual de uma câmera monocular baseado em reconstrução 3D para estimar o posicionamento do veículo. O problema da escala absoluta, inerente ao uso de câmeras monoculares, é resolvido utilizando um conhecimento prévio da relação métrica entre os pontos da imagem e pontos do mundo em um mesmo plano. / The localization problem consists of estimating the position of the robot with regards to some external reference and it is an essential part of robots and autonomous vehicles navigation systems. Localization based on visual odometry, compared to encoder based odometry, stands out at the estimation of rotation and direction of the movement. This kind of approach is an interesting choice for vehicle control systems in urban environment, where the visual information is mandatory for the extraction of semantic information contained in the street signs and marks. In this context this project propose the development of a visual odometry system based on structure from motion using visual information acquired from a monocular camera to estimate the vehicle pose. The absolute scale problem, inherent with the use of monocular cameras, is achieved using som previous known information regarding the metric relation between image points and points lying on a same world plane.
|
5 |
A multiscale framework for affine invariant pattern recognition and registrationRahtu, E. (Esa) 23 October 2007 (has links)
Abstract
This thesis presents a multiscale framework for the construction of affine invariant pattern recognition and registration methods. The idea in the introduced approach is to extend the given pattern to a set of affine covariant versions, each carrying slightly different information, and then to apply known affine invariants to each of them separately. The key part of the framework is the construction of the affine covariant set, and this is done by combining several scaled representations of the original pattern. The advantages compared to previous approaches include the possibility of many variations and the inclusion of spatial information on the patterns in the features.
The application of the multiscale framework is demonstrated by constructing several new affine invariant methods using different preprocessing techniques, combination schemes, and final recognition and registration approaches. The techniques introduced are briefly described from the perspective of the multiscale framework, and further treatment and properties are presented in the corresponding original publications. The theoretical discussion is supported by several experiments where the new methods are compared to existing approaches.
In this thesis the patterns are assumed to be gray scale images, since this is the main application where affine relations arise. Nevertheless, multiscale methods can also be applied to other kinds of patterns where an affine relation is present.
An additional application of one multiscale based technique in convexity measurements is introduced. The method, called multiscale autoconvolution, can be used to build a convexity measure which is a descriptor of object shape. The proposed measure has two special features compared to existing approaches. It can be applied directly to gray scale images approximating binary objects, and it can be easily modified to produce a number of measures. The new measure is shown to be straightforward to evaluate for a given shape, and it performs well in the applications, as demonstrated by the experiments in the original paper.
|
6 |
Real-time Aerial Photograph Alignment using Feature Matching / Placering av flygfoton i realtid utifrån bildegenskaperMagnvall, Andreas, Henne, Alexander January 2021 (has links)
With increased mobile hardware capabilities, improved UAVs and modern algorithms, accurate maps can be created in real-time by capturing overlapping photographs of the ground. A method for mapping that can be used is to position photos by relying purely on the GPS position and altitude. However, GPS inaccuracies will be visible in the created map. In this paper, we will instead present a method for aligning the photos correctly with the help of feature matching. Feature matching is a well-known method which analyses two photos to find similar parts. If an overlap exists, feature matching can be used to find and localise those parts, which can be used for positioning one image over the other at the overlap. When repeating the process, a whole map can be created. For this purpose, we have also evaluated a selection of feature detection and matching algorithms. The algorithm found to be the best was SIFT with FLANN, which was then used in a prototype for creating a complete map of a forest. Feature matching is in many cases superior to GPS positioning, although it cannot be fully depended on as failed or incorrect matching is a common occurrence.
|
7 |
Blur invariant pattern recognition and registration in the Fourier domainOjansivu, V. (Ville) 13 October 2009 (has links)
Abstract
Pattern recognition and registration are integral elements of computer vision, which considers image patterns. This thesis presents novel blur, and combined blur and geometric invariant features for pattern recognition and registration related to images. These global or local features are based on the Fourier transform phase, and are invariant or insensitive to image blurring with a centrally symmetric point spread function which can result, for example, from linear motion or out of focus.
The global features are based on the even powers of the phase-only discrete Fourier spectrum or bispectrum of an image and are invariant to centrally symmetric blur. These global features are used for object recognition and image registration. The features are extended for geometrical invariances up to similarity transformation: shift invariance is obtained using bispectrum, and rotation-scale invariance using log-polar mapping of bispectrum slices. Affine invariance can be achieved as well using rotated sets of the log-log mapped bispectrum slices. The novel invariants are shown to be more robust to additive noise than the earlier blur, and combined blur and geometric invariants based on image moments.
The local features are computed using the short term Fourier transform in local windows around the points of interest. Only the lowest horizontal, vertical, and diagonal frequency coefficients are used, the phase of which is insensitive to centrally symmetric blur. The phases of these four frequency coefficients are quantized and used to form a descriptor code for the local region. When these local descriptors are used for texture classification, they are computed for every pixel, and added up to a histogram which describes the local pattern. There are no earlier textures features which have been claimed to be invariant to blur. The proposed descriptors were superior in the classification of blurred textures compared to a few non-blur invariant state of the art texture classification methods.
|
8 |
Image AlignmentWagner, Katharina 31 May 2006 (has links)
Aligning two images by point to point correspondence is a hard optimization problem. It
can be solved using t-Extremal Optimization or with a modification of this method called
Fitness threshold accepting. In this work these two methods are tested and compared to
see whether one of the methods should be preferred for image alignment. Since real image
data is almost always noisy the performance of the methods under conditions like noisy and
outlying data is analyzed too.
|
9 |
Connectivity driven registration of magnetic resonance images of the human brainPetrovic, Aleksandar January 2010 (has links)
Image registration methods underpin many analysis techniques in neuroimaging. They are essential in group studies when images of different individuals or different modalities need to be brought into a common reference frame. This thesis explores the potential of brain connectivity- driven alignment and develops surface registration techniques for magnetic resonance imaging (MRI), which is a noninvasive neuroimaging tool for probing function and structure of the human brain. The first part of this work develops a novel surface registration framework, based on free mesh deformations, which aligns cortical and subcortical surfaces by matching structural connectivity patterns derived using probabilistic tractography (diffusion-weighted MRI). Structural, i.e. white matter, connectivity is a good predictor of functional specialisation and structural connectivity-driven registration can therefore be expected to enhance the alignment of functionally homologous areas across subjects. The second part validates developed methods for cortical surfaces. Resting State Networks are used in an innovative way to delineate several functionally distinct regions, which were then used to quantify connectivity-driven registration performance by measuring the inter- subject overlap before and after registration. Consequently, the proposed method is assessed using an independent imaging modality and the results are compared to results from state-of-the-art cortical geometry-driven surface registration methods. A connectivity-driven registration pipeline is also developed for, and applied to, the surfaces of subcortical structures such as the thalamus. It is carefully validated on a set of artificial test examples and compared to another novel surface registration paradigm based on spherical wavelets. The proposed registration pipeline is then used to explore the differences in the alignment of two groups of subjects, healthy controls and Alzheimer's disease patients, to a common template. Finally, we propose how functional connectivity can be used instead of structural connectivity for driving registrations, as well as how the surface-based framework can be extended to a volumetric one. Apart from providing the benefits such as the improved functional alignment, we hope that the research conducted in this thesis will also represent the basis for the development of templates of structural and functional brain connectivity.
|
10 |
Aplicacions de tècniques de fusió de dades per a l'anàlisi d'imatges de satèl·lit en OceanografiaReig Bolaño, Ramon 25 June 2008 (has links)
Durant dècades s'ha observat i monitoritzat sistemàticament la Terra i el seu entorn des de l'espai o a partir de plataformes aerotransportades. Paral·lelament, s'ha tractat d'extreure el màxim d'informació qualitativa i quantitativa de les observacions realitzades. Les tècniques de fusió de dades donen un "ventall de procediments que ens permeten aprofitar les dades heterogènies obtingudes per diferents mitjans i instruments i integrar-les de manera que el resultat final sigui qualitativament superior". En aquesta tesi s'han desenvolupat noves tècniques que es poden aplicar a l'anàlisi de dades multiespectrals que provenen de sensors remots, adreçades a aplicacions oceanogràfiques. Bàsicament s'han treballat dos aspectes: les tècniques d'enregistrament o alineament d'imatges; i la interpolació de dades esparses i multiescalars, focalitzant els resultats als camps vectorials bidimensionals.En moltes aplicacions que utilitzen imatges derivades de satèl·lits és necessari mesclar o comparar imatges adquirides per diferents sensors, o bé comparar les dades d'un sòl sensor en diferents instants de temps, per exemple en: reconeixement, seguiment i classificació de patrons o en la monitorització mediambiental. Aquestes aplicacions necessiten una etapa prèvia d'enregistrament geomètric, que alinea els píxels d'una imatge, la imatge de treball, amb els píxels corresponents d'una altra imatge, la imatge de referència, de manera que estiguin referides a uns mateixos punts. En aquest treball es proposa una aproximació automàtica a l'enregistrament geomètric d'imatges amb els contorns de les imatges; a partir d'un mètode robust, vàlid per a imatges mutimodals, que a més poden estar afectades de distorsions, rotacions i de, fins i tot, oclusions severes. En síntesi, s'obté una correspondència punt a punt de la imatge de treball amb el mapa de referència, fent servir tècniques de processament multiresolució. El mètode fa servir les mesures de correlació creuada de les transformades wavelet de les seqüències que codifiquen els contorns de la línia de costa. Un cop s'estableix la correspondència punt a punt, es calculen els coeficients de la transformació global i finalment es poden aplicar a la imatge de treball per a enregistrar-la respecte la referència.A la tesi també es prova de resoldre la interpolació d'un camp vectorial espars mostrejat irregularment. Es proposa un algorisme que permet aproximar els valors intermitjos entre les mostres irregulars si es disposa de valors esparsos a escales de menys resolució. El procediment és òptim si tenim un model que caracteritzi l'esquema multiresolució de descomposició i reconstrucció del conjunt de dades. Es basa en la transformada wavelet discreta diàdica i en la seva inversa, realitzades a partir d'uns bancs de filtres d'anàlisi i síntesi. Encara que el problema està mal condicionat i té infinites solucions, la nostra aproximació, que primer treballarem amb senyals d'una dimensió, dóna una estratègia senzilla per a interpolar els valors d'un camp vectorial bidimensional, utilitzant tota la informació disponible a diferents resolucions. Aquest mètode de reconstrucció es pot utilitzar com a extensió de qualsevol interpolació inicial. També pot ser un mètode adequat si es disposa d'un conjunt de mesures esparses de diferents instruments que prenen dades d'una mateixa escena a diferents resolucions, sense cap restricció en les característiques de la distribució de mesures. Inicialment cal un model dels filtres d'anàlisi que generen les dades multiresolució i els filtres de síntesi corresponents, però aquest requeriment es pot relaxar parcialment, i és suficient tenir una aproximació raonable a la part passa baixes dels filtres. Els resultats de la tesi es podrien implementar fàcilment en el flux de processament d'una estació receptora de satèl·lits, i així es contribuiria a la millora d'aplicacions que utilitzessin tècniques de fusió de dades per a monitoritzar paràmetres mediambientals. / During the last decades a systematic survey of the Earth environment has been set up from many spatial and airborne platforms. At present, there is a continuous effort to extract and combine the maximum of quantitative information from these different data sets, often rather heterogeneous. Data fusion can be defined as "a set of means and tools for the alliance of data originating from different sources with the aims of a greater quality result". In this thesis we have developed new techniques and schemes that can be applied on multispectral data obtained from remote sensors, with particular interest in oceanographic applications. They are based on image and signal processing. We have worked mainly on two topics: image registration techniques or image alignment; and data interpolation of multiscale and sparse data sets, with focus on two dimensional vector fields. In many applications using satellite images, and specifically in those related to oceanographic studies, it is necessary to merge or compare multiple images of the same scene acquired from different captors or from one captor but at different times. Typical applications include pattern classification, recognition and tracking, multisensor data fusion and environmental monitoring. Image registration is the process of aligning the remotely sensed images to the same ground truth and transforming them into a known geographic projection (map coordinates). This step is crucial to correctly merge complementary information from multisensor data. The proposed approach to automatic image registration is a robust method, valid for multimodal images affected by distortions, rotations and, to a reasonably extend, with severe data occlusion. We derived a point to point matching of one image to a georeferenced map applying multiresolution signal processing techniques. The method is based on the contours of images: it uses a maximum cross correlation measure on the biorthogonal undecimated discrete wavelet transforms of the codified coastline contours sequences. Once this point to point correspondence is established, the coefficients of a global transform could be calculated and finally applied on the working image to register it to the georeferenced map. The second topic of this thesis focus on the interpolation of sparse irregularly-sampled vector fields when these sparse data belong to different resolutions. It is proposed a new algorithm to iteratively approximate the intermediate values between irregularly sampled data when a set of sparse values at coarser scales is known. The procedure is optimal if there is a characterized model for the multiresolution decomposition / reconstruction scheme of the dataset. The scheme is based on a fast dyadic wavelet transform and on its inversion using a filter bank analysis/synthesis implementation for the wavelet transform model. Although the problem is ill-posed, and there are infinite solutions, our approach, firstly worked for one dimension signals, gives an easy strategy to interpolate the values of a vector field using all the information available at different scales. This reconstruction method could be used as an extension on any initial interpolation. It can also be suitable in cases where there are sparse measures from different instruments that are sensing the same scene simultaneously at several resolutions, without any restriction to the characteristics of the data distribution. Initially a filter model for the generation of multiresolution data and their synthesis counterpart is the main requisite but; this assumption can be partially relaxed with the only requirement of a reasonable approximation to the low pass counterpart. The thesis results can be easily implemented on the process stream of any satellite receiving station and therefore constitute a first contribution to potential applications on data fusion of environmental monitoring.
|
Page generated in 0.0984 seconds