• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 19
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 141
  • 141
  • 32
  • 27
  • 26
  • 21
  • 19
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Blur Estimation And Superresolution From Multiple Registered Images

Senses, Engin Utku 01 September 2008 (has links) (PDF)
Resolution is the most important criterion for the clarity of details on an image. Therefore, high resolution images are required in numerous areas. However, obtaining high resolution images has an evident technological cost and the value of these costs change with the quality of used optical systems. Image processing methods are used to obtain high resolution images with low costs. This kind of image improvement is named as superresolution image reconstruction. This thesis focuses on two main titles, one of which is the identification methods of blur parameters, one of the degradation operators, and the stochastic SR image reconstruction methods. The performances of different stochastic SR image reconstruction methods and blur identification methods are shown and compared. Then the identified blur parameters are used in superresolution algorithms and the results are shown.
42

Image Enhancement over a Sequence of Images

Karelid, Mikael January 2008 (has links)
<p>This Master Thesis has been conducted at the National Laboratory of Forensic Science (SKL) in Linköping. When images that are to be analyzed at SKL, presenting an interesting object, are of bad quality there may be a need to enhance them. If several images with the object are available, the total amount of information can be used in order to estimate one single enhanced image. A program to do this has been developed by studying methods for image registration and high resolution image estimation. Tests of important parts of the procedure have been conducted. The final results are satisfying and the key to a good high resolution image seems to be the precision of the image registration. Improvements of this part may lead to even better results. More suggestions for further improvementshave been proposed.</p> / <p>Detta examensarbete har utförts på uppdrag av Statens Kriminaltekniska Laboratorium (SKL) i Linköping. Då bilder av ett intressant objekt som ska analyseras på SKL ibland är av dålig kvalitet finns det behov av att förbättra dessa. Om ett flertal bilder på objektet finns tillgängliga kan den totala informationen fråndessa användas för att skatta en enda förbättrad bild. Ett program för att göra detta har utvecklats genom studier av metoder för bildregistrering och skapande av högupplöst bild. Tester av viktiga delar i proceduren har genomförts. De slutgiltiga resultaten är goda och nyckeln till en bra högupplöst bild verkar ligga i precisionen för bildregistreringen. Genom att förbättra denna del kan troligtvis ännu bättre resultat fås. Även andra förslag till förbättringar har lagts fram.</p>
43

Fingerprints recognition

Dimitrov, Emanuil January 2009 (has links)
<p>Nowadays biometric identification is used in a variety of applications-administration, business and even home. Although there are a lot of biometric identifiers, fingerprints are the most widely spread due to their acceptance from the people and the cheap price of the hardware equipment. Fingerprint recognition is a complex image recognition problem and includes algorithms and procedures for image enhancement and binarization, extracting and matching features and sometimes classification. In this work the main approaches in the research area are discussed, demonstrated and tested in a sample application. The demonstration software application is developed by using Verifinger SDK and Microsoft Visual Studio platform. The fingerprint sensor for testing the application is AuthenTec AES2501.</p>
44

A new algorithm for minutiae extraction and matching in fingerprint

Noor, Azad January 2012 (has links)
A novel algorithm for fingerprint template formation and matching in automatic fingerprint recognition has been developed. At present, fingerprint is being considered as the dominant biometric trait among all other biometrics due to its wide range of applications in security and access control. Most of the commercially established systems use singularity point (SP) or ‘core’ point for fingerprint indexing and template formation. The efficiency of these systems heavily relies on the detection of the core and the quality of the image itself. The number of multiple SPs or absence of ‘core’ on the image can cause some anomalies in the formation of the template and may result in high False Acceptance Rate (FAR) or False Rejection Rate (FRR). Also the loss of actual minutiae or appearance of new or spurious minutiae in the scanned image can contribute to the error in the matching process. A more sophisticated algorithm is therefore necessary in the formation and matching of templates in order to achieve low FAR and FRR and to make the identification more accurate. The novel algorithm presented here does not rely on any ‘core’ or SP thus makes the structure invariant with respect to global rotation and translation. Moreover, it does not need orientation of the minutiae points on which most of the established algorithm are based. The matching methodology is based on the local features of each minutiae point such as distances to its nearest neighbours and their internal angle. Using a publicly available fingerprint database, the algorithm has been evaluated and compared with other benchmark algorithms. It has been found that the algorithm has performed better compared to others and has been able to achieve an error equal rate of 3.5%.
45

Models of Visual Appearance for Analyzing and Editing Images and Videos

Sunkavalli, Kalyan 15 August 2012 (has links)
The visual appearance of an image is a complex function of factors such as scene geometry, material reflectances and textures, illumination, and the properties of the camera used to capture the image. Understanding how these factors interact to produce an image is a fundamental problem in computer vision and graphics. This dissertation examines two aspects of this problem: models of visual appearance that allow us to recover scene properties from images and videos, and tools that allow users to manipulate visual appearance in images and videos in intuitive ways. In particular, we look at these problems in three different applications. First, we propose techniques for compositing images that differ significantly in their appearance. Our framework transfers appearance between images by manipulating the different levels of a multi-scale decomposition of the image. This allows users to create realistic composites with minimal interaction in a number of different scenarios. We also discuss techniques for compositing and replacing facial performances in videos. Second, we look at the problem of creating high-quality still images from low-quality video clips. Traditional multi-image enhancement techniques accomplish this by inverting the camera’s imaging process. Our system incorporates feature weights into these image models to create results that have better resolution, noise, and blur characteristics, and summarize the activity in the video. Finally, we analyze variations in scene appearance caused by changes in lighting. We develop a model for outdoor scene appearance that allows us to recover radiometric and geometric infor- mation about the scene from images. We apply this model to a variety of visual tasks, including color-constancy, background subtraction, shadow detection, scene reconstruction, and camera geo-location. We also show that the appearance of a Lambertian scene can be modeled as a combi- nation of distinct three-dimensional illumination subspaces — a result that leads to novel bounds on scene appearance, and a robust uncalibrated photometric stereo method. / Engineering and Applied Sciences
46

Depth-Assisted Semantic Segmentation, Image Enhancement and Parametric Modeling

Zhang, Chenxi 01 January 2014 (has links)
This dissertation addresses the problem of employing 3D depth information on solving a number of traditional challenging computer vision/graphics problems. Humans have the abilities of perceiving the depth information in 3D world, which enable humans to reconstruct layouts, recognize objects and understand the geometric space and semantic meanings of the visual world. Therefore it is significant to explore how the 3D depth information can be utilized by computer vision systems to mimic such abilities of humans. This dissertation aims at employing 3D depth information to solve vision/graphics problems in the following aspects: scene understanding, image enhancements and 3D reconstruction and modeling. In addressing scene understanding problem, we present a framework for semantic segmentation and object recognition on urban video sequence only using dense depth maps recovered from the video. Five view-independent 3D features that vary with object class are extracted from dense depth maps and used for segmenting and recognizing different object classes in street scene images. We demonstrate a scene parsing algorithm that uses only dense 3D depth information to outperform using sparse 3D or 2D appearance features. In addressing image enhancement problem, we present a framework to overcome the imperfections of personal photographs of tourist sites using the rich information provided by large-scale internet photo collections (IPCs). By augmenting personal 2D images with 3D information reconstructed from IPCs, we address a number of traditionally challenging image enhancement techniques and achieve high-quality results using simple and robust algorithms. In addressing 3D reconstruction and modeling problem, we focus on parametric modeling of flower petals, the most distinctive part of a plant. The complex structure, severe occlusions and wide variations make the reconstruction of their 3D models a challenging task. We overcome these challenges by combining data driven modeling techniques with domain knowledge from botany. Taking a 3D point cloud of an input flower scanned from a single view, each segmented petal is fitted with a scale-invariant morphable petal shape model, which is constructed from individually scanned 3D exemplar petals. Novel constraints based on botany studies are incorporated into the fitting process for realistically reconstructing occluded regions and maintaining correct 3D spatial relations. The main contribution of the dissertation is in the intelligent usage of 3D depth information on solving traditional challenging vision/graphics problems. By developing some advanced algorithms either automatically or with minimum user interaction, the goal of this dissertation is to demonstrate that computed 3D depth behind the multiple images contains rich information of the visual world and therefore can be intelligently utilized to recognize/ understand semantic meanings of scenes, efficiently enhance and augment single 2D images, and reconstruct high-quality 3D models.
47

An Examination Of Super Resolution Methods

Sert, Yilca Baris 01 April 2006 (has links) (PDF)
The resolution of the image is one of the main measures of image quality. Higher resolution is desired and often required in most of the applications, because higher resolution means more details in the image. The use of better image sensors and optics is an expensive and also limiting way of increasing pixel density within the image. The use of image processing methods, to obtain a high resolution image from low resolution images is a cheap and effective solution. This kind of image enhancement is called super resolution image reconstruction. This thesis focuses on the definition, implementation and analysis on well-known techniques of super resolution. The comparison and analysis are the main concerns to understand the improvements of the super resolution methods over single frame interpolation techniques. In addition, the comparison also gives us an insight to the practical uses of super resolution methods. As a result of the analysis, the critical examination of the techniques and their performance evaluation are achieved.
48

Visual linearization of image data for the display of digital intraoral radiographs /

Li, Gang, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 6 uppsatser.
49

Magnetic resonance imaging of the hepatobiliary system using hepatocyte-specific contrast media /

Dahlström, Nils, January 2009 (has links)
Licentiatavhandling (sammanfattning) Linköping : Linköpings universitet, 2009. / Härtill 2 uppsatser.
50

Distortion correction for diffusion weighted magnetic resonance images

Stinson, Eric Gregory, January 1900 (has links)
Thesis (M.Sc.). / Written for the Medical Physics Unit. Title from title page of PDF (viewed 2009/09/07). Includes bibliographical references.

Page generated in 0.1136 seconds