1 |
Statistical models for natural scene dataKivinen, Jyri Juhani January 2014 (has links)
This thesis considers statistical modelling of natural image data. Obtaining advances in this field can have significant impact for both engineering applications, and for the understanding of the human visual system. Several recent advances in natural image modelling have been obtained with the use of unsupervised feature learning. We consider a class of such models, restricted Boltzmann machines (RBMs), used in many recent state-of-the-art image models. We develop extensions of these stochastic artificial neural networks, and use them as a basis for building more effective image models, and tools for computational vision. We first develop a novel framework for obtaining Boltzmann machines, in which the hidden unit activations co-transform with transformed input stimuli in a stable and predictable way throughout the network. We define such models to be transformation equivariant. Such properties have been shown useful for computer vision systems, and have been motivational for example in the development of steerable filters, a widely used classical feature extraction technique. Translation equivariant feature sharing has been the standard method for scaling image models beyond patch-sized data to large images. In our framework we extend shallow and deep models to account for other kinds of transformations as well, focusing on in-plane rotations. Motivated by the unsatisfactory results of current generative natural image models, we take a step back, and evaluate whether they are able to model a subclass of the data, natural image textures. This is a necessary subcomponent of any credible model for visual scenes. We assess the performance of a state- of-the-art model of natural images for texture generation, using a dataset and evaluation techniques from in prior work. We also perform a dissection of the model architecture, uncovering the properties important for good performance. Building on this, we develop structured extensions for more complicated data comprised of textures from multiple classes, using the single-texture model architecture as a basis. These models are shown to be able to produce state-of-the-art texture synthesis results quantitatively, and are also effective qualitatively. It is demonstrated empirically that the developed multiple-texture framework provides a means to generate images of differently textured regions, more generic globally varying textures, and can also be used for texture interpolation, where the approach is radically dfferent from the others in the area. Finally we consider visual boundary prediction from natural images. The work aims to improve understanding of Boltzmann machines in the generation of image segment boundaries, and to investigate deep neural network architectures for learning the boundary detection problem. The developed networks (which avoid several hand-crafted model and feature designs commonly used for the problem), produce the fastest reported inference times in the literature, combined with state-of-the-art performance.
|
2 |
Multiscale Methods in Image Modelling and Image ProcessingAlexander, Simon January 2005 (has links)
The field of modelling and processing of 'images' has fairly recently become important, even crucial, to areas of science, medicine, and engineering. The inevitable explosion of imaging modalities and approaches stemming from this fact has become a rich source of mathematical applications. <br /><br /> 'Imaging' is quite broad, and suffers somewhat from this broadness. The general question of 'what is an image?' or perhaps 'what is a natural image?' turns out to be difficult to address. To make real headway one may need to strongly constrain the class of images being considered, as will be done in part of this thesis. On the other hand there are general principles that can guide research in many areas. One such principle considered is the assertion that (classes of) images have multiscale relationships, whether at a pixel level, between features, or other variants. There are both practical (in terms of computational complexity) and more philosophical reasons (mimicking the human visual system, for example) that suggest looking at such methods. Looking at scaling relationships may also have the advantage of opening a problem up to many mathematical tools. <br /><br /> This thesis will detail two investigations into multiscale relationships, in quite different areas. One will involve Iterated Function Systems (IFS), and the other a stochastic approach to reconstruction of binary images (binary phase descriptions of porous media). The use of IFS in this context, which has often been called 'fractal image coding', has been primarily viewed as an image compression technique. We will re-visit this approach, proposing it as a more general tool. Some study of the implications of that idea will be presented, along with applications inferred by the results. In the area of reconstruction of binary porous media, a novel, multiscale, hierarchical annealing approach is proposed and investigated.
|
3 |
Multiscale Methods in Image Modelling and Image ProcessingAlexander, Simon January 2005 (has links)
The field of modelling and processing of 'images' has fairly recently become important, even crucial, to areas of science, medicine, and engineering. The inevitable explosion of imaging modalities and approaches stemming from this fact has become a rich source of mathematical applications. <br /><br /> 'Imaging' is quite broad, and suffers somewhat from this broadness. The general question of 'what is an image?' or perhaps 'what is a natural image?' turns out to be difficult to address. To make real headway one may need to strongly constrain the class of images being considered, as will be done in part of this thesis. On the other hand there are general principles that can guide research in many areas. One such principle considered is the assertion that (classes of) images have multiscale relationships, whether at a pixel level, between features, or other variants. There are both practical (in terms of computational complexity) and more philosophical reasons (mimicking the human visual system, for example) that suggest looking at such methods. Looking at scaling relationships may also have the advantage of opening a problem up to many mathematical tools. <br /><br /> This thesis will detail two investigations into multiscale relationships, in quite different areas. One will involve Iterated Function Systems (IFS), and the other a stochastic approach to reconstruction of binary images (binary phase descriptions of porous media). The use of IFS in this context, which has often been called 'fractal image coding', has been primarily viewed as an image compression technique. We will re-visit this approach, proposing it as a more general tool. Some study of the implications of that idea will be presented, along with applications inferred by the results. In the area of reconstruction of binary porous media, a novel, multiscale, hierarchical annealing approach is proposed and investigated.
|
Page generated in 0.0676 seconds