1 |
Novel entropy coding and its application of the compression of 3D image and video signalsAmal, Mehanna January 2013 (has links)
The broadcast industry is moving future Digital Television towards Super high resolution TV (4k or 8k) and/or 3D TV. This ultimately will increase the demand on data rate and subsequently the demand for highly efficient codecs. One of the techniques that researchers found it one of the promising technologies in the industry in the next few years is 3D Integral Image and Video due to its simplicity and mimics the reality, independently on viewer aid, one of the challenges of the 3D Integral technology is to improve the compression algorithms to adequate the high resolution and exploit the advantages of the characteristics of this technology. The research scope of this thesis includes designing a novel coding for the 3D Integral image and video compression. Firstly to address the compression of 3D Integral imaging the research proposes novel entropy coding which will be implemented first on 2D traditional images content in order to compare it with the other traditional common standards then will be applied on 3D Integra image and video. This approach seeks to achieve high performance represented by high image quality and low bit rate in association with low computational complexity. Secondly, new algorithm will be proposed in an attempt to improve and develop the transform techniques performance, initially by using a new adaptive 3D-DCT algorithm then by proposing a new hybrid 3D DWT-DCT algorithm via exploiting the advantages of each technique and get rid of the artifact that each technique of them suffers from. Finally, the proposed entropy coding will be further implemented to the 3D integral video in association with another proposed algorithm that based on calculating the motion vector on the average viewpoint for each frame. This approach seeks to minimize the complexity and reduce the speed without affecting the Human Visual System (HVS) performance. Number of block matching techniques will be used to investigate the best block matching technique that is adequate for the new proposed 3D integral video algorithm.
|
2 |
Foreground detection of video through the integration of novel multiple detection algorithimsNawaz, Muhammad January 2013 (has links)
The main outcomes of this research are the design of a foreground detection algorithm, which is more accurate and less time consuming than existing algorithms. By the term accuracy we mean an exact mask (which satisfies the respective ground truth value) of the foreground object(s). Motion detection being the prior component of foreground detection process can be achieved via pixel based and block based methods, both of which have their own merits and disadvantages. Pixel based methods are efficient in terms of accuracy but a time consuming process, so cannot be recommended for real time applications. On the other hand block based motion estimation has relatively less accuracy but consumes less time and is thus ideal for real-time applications. In the first proposed algorithm, block based motion estimation technique is opted for timely execution. To overcome the issue of accuracy another morphological based technique was adopted called opening-and-closing by reconstruction, which is a pixel based operation so produces higher accuracy and requires lesser time in execution. Morphological operation opening-and-closing by reconstruction finds the maxima and minima inside the foreground object(s). Thus this novel simultaneous process compensates for the lower accuracy of block based motion estimation. To verify the efficiency of this algorithm a complex video consisting of multiple colours, and fast and slow motions at various places was selected. Based on 11 different performance measures the proposed algorithm achieved an average accuracy of more than 24.73% than four of the well-established algorithms. Background subtraction, being the most cited algorithm for foreground detection, encounters the major problem of proper threshold value at run time. For effective value of the threshold at run time in background subtraction algorithm, the primary component of the foreground detection process, motion is used, in this next proposed algorithm. For the said purpose the smooth histogram peaks and valley of the motion were analyzed, which reflects the high and slow motion areas of the moving object(s) in the given frame and generates the threshold value at run time by exploiting the values of peaks and valley. This proposed algorithm was tested using four recommended video sequences including indoor and outdoor shoots, and were compared with five high ranked algorithms. Based on the values of standard performance measures, the proposed algorithm achieved an average of more than 12.30% higher accuracy results.
|
3 |
Zpracování obrazu a videa na mobilních telefonech / Image and Video Processing on Mobile PhonesGazdík, Martin Unknown Date (has links)
This paper deals with image and video processing on Symbian OS smartphones. Description of required development tools is given, and pros and cons of existing image processing applications are discussed. Afterwards, a new application, fast image viewer and editor, is designed keeping disadvantages of similar applications in mind. Purpose of this work is to make simple and fast tool for easy manipulation with integrated camera and captured images. Results and future development directions are at the end.
|
4 |
Anonymizace videa / Video AnonymizationMokrý, Martin January 2019 (has links)
The goal of this thesis is to design and create an automatic system for video anonymization. This system makes use of various object detectors on an image to ensure functionality, as well as active tracking of objects detected in this manner. Adjustments are later applied to these detected objects which ensure sufficient level of anonymization. The main asset of this system is speeding up the anonymization process of videos that can be published after.
|
5 |
A Real-Time Computational Decision Support System for Compounded Sterile Preparations using Image Processing and Artificial Neural NetworksRegmi, Hem Kanta January 2016 (has links)
No description available.
|
6 |
Počítačové vidění a detekce gest rukou a prstů / Computer vision and hand gestures detection and fingers trackingBravenec, Tomáš January 2019 (has links)
Diplomová práce je zaměřena na detekci a rozpoznání gest rukou a prstů ve statických obrazech i video sekvencích. Práce obsahuje shrnutí několika různých přístupů k samotné detekci a také jejich výhody i nevýhody. V práci je též obsažena realizace multiplatformní aplikace napsané v Pythonu s použitím knihoven OpenCV a PyTorch, která dokáže zobrazit vybraný obraz nebo přehrát video se zvýrazněním rozpoznaných gest.
|
Page generated in 0.1466 seconds