• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Campos receptivos similares às wavelets de Haar são gerados a partir da codificação eficiente de imagens urbanas;V1 / Receptive fields similar to those of wavelets are generated by Haar from the consolidation of efficient urban images

Cavalcante, André Borges 25 February 2008 (has links)
Made available in DSpace on 2016-08-17T14:52:43Z (GMT). No. of bitstreams: 1 Andre Borges Cavalcante.pdf: 1739525 bytes, checksum: 2073615c7df203b086d5c76276905a35 (MD5) Previous issue date: 2008-02-25 / Efficient coding of natural images yields filters similar to the Gabor-like receptive fields of simple cells of primary visual cortex. However, natural and man-made images have different statistical proprieties. Here we show that a simple theoretical analysis of power spectra in a sparse model suggests that natural and man-made images would need specific filters for each group. Indeed, when applying sparse coding to man-made scenes, we found both Gabor and Haar wavelet-like filters. Furthermore, we found that man-made images when projected on those filters yielded smaller mean squared error than when projected on Gabor-like filters only. Thus, as natural and man-made images require different filters to be efficiently represented, these results suggest that besides Gabor, the primary visual cortex should also have cells with Haar-like receptive fields. / A codificação eficiente de imagens naturais gera filtros similares às wavelets de Gabor que relembram os campos receptivos de células simples do córtex visual primário. No entanto, imagens naturais e urbanas tem características estatísticas diferentes. Será mostrado que uma simples análise do espectro de potência em um modelo eficiente sugere que imagens naturais e urbanas requerem filtros específicos para cada grupo. De fato, aplicando codificação eficiente à imagens urbanas, encontramos filtros similares às wavelets de Gabor e de Haar. Além disso, observou-se que imagens urbanas quando projetadas nesses filtros geraram um menor erro médio quadrático do que quando projetadas somente em filtros de similares a Gabor. Desta forma, como imagens naturais e urbanas requerem filtros diferentes para serem representadas de forma eficiente, estes resultados sugerem que além de Gabor, o córtex visual primário também deve possuir células com campos receptivos similares às wavelets de Haar.
2

Duas abordagens para casamento de padrões de pontos usando relações espaciais e casamento entre grafos / Two approaches for point set matching using spatial relations for graph matching

Noma, Alexandre 07 July 2010 (has links)
Casamento de padrões de pontos é um problema fundamental em reconhecimento de padrões. O objetivo é encontrar uma correspondência entre dois conjuntos de pontos, associados a características relevantes de objetos ou entidades, mapeando os pontos de um conjunto no outro. Este problema está associado a muitas aplicações, como por exemplo, reconhecimento de objetos baseado em modelos, imagens estéreo, registro de imagens, biometria, entre outros. Para encontrar um mapeamento, os objetos são codificados por representações abstratas, codificando as características relevantes consideradas na comparação entre pares de objetos. Neste trabalho, objetos são representados por grafos, codificando tanto as características `locais\' quanto as relações espaciais entre estas características. A comparação entre objetos é guiada por uma formulação de atribuição quadrática, que é um problema NP-difícil. Para estimar uma solução, duas técnicas de casamento entre grafos são propostas: uma baseada em grafos auxiliares, chamados de grafos deformados; e outra baseada em representações `esparsas\', campos aleatórios de Markov e propagação de crenças. Devido as suas respectivas limitações, as abordagens são adequadas para situações específicas, conforme mostrado neste documento. Resultados envolvendo as duas abordagens são ilustrados em quatro importantes aplicações: casamento de imagens de gel eletroforese 2D, segmentação interativa de imagens naturais, casamento de formas, e colorização assistida por computador. / Point set matching is a fundamental problem in pattern recognition. The goal is to match two sets of points, associated to relevant features of objects or entities, by finding a mapping, or a correspondence, from one set to another set of points. This issue arises in many applications, e.g. model-based object recognition, stereo matching, image registration, biometrics, among others. In order to find a mapping, the objects can be encoded by abstract representations, carrying relevant features which are taken into account to compare pairs of objects. In this work, graphs are adopted to represent the objects, encoding their `local\' features and the spatial relations between these features. The comparison of two given objects is guided by a quadratic assignment formulation, which is NP-hard. In order to estimate the optimal solution, two approximations techniques, via graph matching, are proposed: one is based on auxiliary graphs, called deformed graphs; the other is based on `sparse\' representations, Markov random fields and belief propagation. Due to their respective limitations, each approach is more suitable to each specific situation, as shown in this document. The quality of the two approaches is illustrated on four important applications: 2D electrophoresis gel matching, interactive natural image segmentation, shape matching, and computer-assisted colorization.
3

Duas abordagens para casamento de padrões de pontos usando relações espaciais e casamento entre grafos / Two approaches for point set matching using spatial relations for graph matching

Alexandre Noma 07 July 2010 (has links)
Casamento de padrões de pontos é um problema fundamental em reconhecimento de padrões. O objetivo é encontrar uma correspondência entre dois conjuntos de pontos, associados a características relevantes de objetos ou entidades, mapeando os pontos de um conjunto no outro. Este problema está associado a muitas aplicações, como por exemplo, reconhecimento de objetos baseado em modelos, imagens estéreo, registro de imagens, biometria, entre outros. Para encontrar um mapeamento, os objetos são codificados por representações abstratas, codificando as características relevantes consideradas na comparação entre pares de objetos. Neste trabalho, objetos são representados por grafos, codificando tanto as características `locais\' quanto as relações espaciais entre estas características. A comparação entre objetos é guiada por uma formulação de atribuição quadrática, que é um problema NP-difícil. Para estimar uma solução, duas técnicas de casamento entre grafos são propostas: uma baseada em grafos auxiliares, chamados de grafos deformados; e outra baseada em representações `esparsas\', campos aleatórios de Markov e propagação de crenças. Devido as suas respectivas limitações, as abordagens são adequadas para situações específicas, conforme mostrado neste documento. Resultados envolvendo as duas abordagens são ilustrados em quatro importantes aplicações: casamento de imagens de gel eletroforese 2D, segmentação interativa de imagens naturais, casamento de formas, e colorização assistida por computador. / Point set matching is a fundamental problem in pattern recognition. The goal is to match two sets of points, associated to relevant features of objects or entities, by finding a mapping, or a correspondence, from one set to another set of points. This issue arises in many applications, e.g. model-based object recognition, stereo matching, image registration, biometrics, among others. In order to find a mapping, the objects can be encoded by abstract representations, carrying relevant features which are taken into account to compare pairs of objects. In this work, graphs are adopted to represent the objects, encoding their `local\' features and the spatial relations between these features. The comparison of two given objects is guided by a quadratic assignment formulation, which is NP-hard. In order to estimate the optimal solution, two approximations techniques, via graph matching, are proposed: one is based on auxiliary graphs, called deformed graphs; the other is based on `sparse\' representations, Markov random fields and belief propagation. Due to their respective limitations, each approach is more suitable to each specific situation, as shown in this document. The quality of the two approaches is illustrated on four important applications: 2D electrophoresis gel matching, interactive natural image segmentation, shape matching, and computer-assisted colorization.

Page generated in 0.0457 seconds