• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of 2,5-Diaminoimidazolone, a Mutagenic Product of Oxidation of Guanine in DNA

Pollard, Hannah Catherine J 01 December 2017 (has links)
2,5-diaminoimidazolone (Iz) is an important product of a 4-electron oxidation of guanine. The present research focuses on the mechanisms of formation of Iz via pathways initiated by guanine oxidation by one-electron oxidants (OEOs) generated by X-ray radiolysis in aqueous solutions. The kinetics of formation and yields of Iz in reactions of native highly polymerized DNA with different OEOs have been compared using an HPLC-based quantitative analysis of low-molecular products generated from the reaction of DNA-bound Iz with primary amines. Mechanisms of Iz formation in DNA have been investigated including oxygen and superoxide dependence as well as the hypothesis that 8-oxo-G, another product of guanine oxidation, is not a major precursor to Iz. Results indicate Iz is produced in significant quantities in DNA from guanine oxidation and the efficiency of its formation correlates with the reduction potential and selectivity of a given OEO.
2

DNA Damage by the Sulfate Radical Anion: Hydrogen Abstraction From the Sugar Moiety Versus One-Electron Oxidation of Guanine

Roginskaya, Marina, Mohseni, Reza, Ampadu-Boateng, Derrick, Razskazovskiy, Yuriy 02 July 2016 (has links)
The products of oxidative damage to double-stranded (ds) DNA initiated by photolytically generated sulfate radical anions SO4•− were analyzed using reverse-phase (RP) high-performance liquid chromatography (HPLC). Relative efficiencies of two major pathways were compared: production of 8-oxoguanine (8oxoG) and hydrogen abstraction from the DNA 2-deoxyribose moiety (dR) at C1,′ C4,′ and C5′ positions. The formation of 8oxoG was found to account for 87% of all quantified lesions at low illumination doses. The concentration of 8oxoG quickly reaches a steady state at about one 8oxoG per 100 base pairs due to further oxidation of its products. It was found that another guanine oxidation product identified as 2-amino-5-(2′-alkylamino)-4H-imidazol-4-one (X) was released in significant quantities from its tentative precursor 2-amino-5-[(2′-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) upon treatment with primary amines in neutral solutions. The linear dose dependence of X release points to the formation of dIz directly from guanine and not through oxidation of 8oxoG. The damage to dR was found to account for about 13% of the total damage, with majority of lesions (33%) originating from the C4′ oxidation. The contribution of C1′ oxidation also turned out to be significant (17% of all dR damages) despite of the steric problems associated with the abstraction of the C1′-hydrogen. However, no evidence of base-to-sugar free valence transfer as a possible alternative to direct hydrogen abstraction at C1′ was found.

Page generated in 0.0355 seconds