Spelling suggestions: "subject:"aminophosphine"" "subject:"monophosphine""
1 |
Synthesis and Characterization of Iminophosphine Copper ComplexesChen, Chao-Jui 20 July 2000 (has links)
None
|
2 |
The Anion Effect on the Reaction between Zinc Ion and IminophosphinesLin, Huey-Jen 20 June 2001 (has links)
none
|
3 |
A Study on Chelation Modes of Hemilabile Ligands Containing Phosphorus, Nitrogen, and Sulfur Atoms toward Late Transition Metal IonsWu, Jing-Yun 02 July 2003 (has links)
Hemilabile ligands attracted much attention in past thirty years because they were effectively utilized in the field of coordination chemistry and homogenous catalysis. We have synthesized four tridentate iminophosphine ligands (o-Ph2P(C6H4)-C(H)=N-(CH2)n-R, n = 2, R = SnBu, LPNS1; n = 3, R = SMe, LPNS2; n = 3, R = OMe, LPNO3; and n = 3, R = NMe2, LPNN4) and one tridentate aminophosphine ligand (o-Ph2P(C6H4)CH2N(H)(CH2)3NMe2, LPNHN5) in this work. The structures of the iminophosphine copper(I) complexes were determined by the carbon-chain length between imino-nitrogen and third donor atom, the coordination ability of the third donor atom, and the nature of the anions (i.e. its donor ability and atomic radius). An unexpected tetranuclear copper(I) iodide complex [(CuI)2(LPNN4)]2 (16) was obtained due to the larger atomic radius of iodide ion. The ligand LPNN4 displayed versatile coordination behavior after complexing with some late transition metals such as Pd(II), Ag(I), Zn(II), Cd(II). These tridentate ligands may act as PN-chelator or PNE-chelator (E = S, N¡¦). Both chelating and bridging modes were observed at the same time in Cu(I) and Ag(I) complexes. In Zn(II) complex, however, chelating by LPNN4 chelated only occurred through its N donor atoms. In term of the reactivity study of these complexes, we found that the complex [Cu(LPNN4)(CH3CN)0.2](BF4) (17) would successful react with Na(SCN), NaN3, and PhCCH/KOH to generate corresponding substitution products. However when reacted with PhCCC(O)OH/KOH, copper complexes bearing LPNN4 could not give the corresponding substituted carboxylate copper(I) product and gave the complex [Cu(CCPh)(LPNN4)]2 (18) via auto-decarboxylation instead.
|
4 |
Investigation of the Steric and Electronic Properties of 3-Iminophosphine Ligands in Chelated Palladium Allyl Complexes for Use in the Regioselective Hydroamination of AllenesZingales, Nicholas C. 22 August 2013 (has links)
No description available.
|
5 |
Hydroamination and Hydrosilylation Catalyzed by Cationic Palladium- and Nickel(allyl) Complexes Supported by 3-Iminophosphine LigandsTafazolian, Hosein January 2016 (has links)
No description available.
|
6 |
Structural Study on Metal Complexes (M=Zn, Ag, Pd) with Multidentate Ligands Containing Phosphorus, Sulfur and Nitrogen AtomHuang, Duo-Feng 03 September 2003 (has links)
The late transition metal complexes containing sulfide ligands have trem- endous applications not only in biochemistry but also in industrial catalysis. We have successfully synthesized four different bidentate ligands, 2- (Benzylidene)benzenethiol(NS-1), 2-[2,6-(Dimethylbenzylidene)]benzenethi- ol(NS-2), 2-(2-Chloro-1-methylethylidene)benzenethiol(NS-3) and 2-(Diphe- nylphosphanyl)benzenethiol(PS), and five tridentate ligands, N-{N-[2-(Diph- enylphosphino)benzylidene]-2-sec-butylethylsulfide}(PNS-1), N-{N-[2-(Di- phenylphosphino)benzylamino]-2-sec-butylethylsulfide}(PNS-2), 2-[2-(Diph- enylphosphino)phenylsulfanylmethyl]pyridine(PSN-1), 2-[2-(Diphenylphos- phino)phenylsulfanyl]ethylamine(PSN-2) and 2-(Diphenylphosphino)phenyl- sulfanylacetonitrile(PSN-3). These ligands reacted with the late transition metal (Zn, Ag, Pd, and Ni) salts, and produced complexes 1-12. Besides their spectra, we also obtained crystal structures of complexes 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. We found that the PNS tridentate ligands had different bonding modes in zinc, silver, palladium, and nickel complexes. For examples, in zinc complexes 1 and 2 only P and S atoms were coordinated to the metal while all P, N, and S atoms were coordinated to the Pd metal in Pd complexes. It indicated that thiolether prefers to coordinate to palladium but not to zinc in our cases. When PNS-2 went through different reaction routes, two silver complexes 4 and 5 with different coordination modes a M2L2 type dinuclear complex and a ML2 type mononuclear complex were obtained.. When reacting PNS-2 with nickel, we obtained an unique tetranuclear nickel complex 6. PSN-1 showed two different coordinate modes in complexes 8-10 while PSN-2 and silver produced a dinuclear silver complex 11 that resembled complex 4. PSN-3 coordinated to Pd ion by phosphorus and sulfide atoms. As such, we demonstrated the various coordinated modes in PNS and PSN ligands. Finally PS bidentate ligand reacted with zinc salt produced complex 7 with one oxidized ligand. The variable temperature NMR experiment was also used to probe the structural change that occurred in solution state for 3.
|
7 |
Synthesis, Reactivity, and Catalysis of 3-Iminophosphine Palladium ComplexesShaffer, Andrew R. 25 September 2009 (has links)
No description available.
|
8 |
Hydroamination and Hydrothiolation Catalyzed by 3-Iminophosphine Palladium ComplexesThakuri, Rajendr Singh January 2020 (has links)
No description available.
|
Page generated in 0.0383 seconds