1 |
Flat Virtual Pure TanglesChu, Karene Kayin 11 December 2012 (has links)
Virtual knot theory, introduced by Kauffman, is a generalization of classical knot theory of interest because its finite-type invariant theory is potentially a topological interpretation of Etingof and Kazhdan's theory of quantization of Lie bi-algebras. Classical knots inject into virtual knots}, and flat virtual knots is the quotient of virtual knots which equates the real positive and negative crossings, and in this sense is complementary to classical knot theory within virtual knot theory.
We classify flat virtual tangles with no closed components and give bases for its ``infinitesimal'' algebras. The classification of the former can be used as an invariant on virtual tangles with no closed components and virtual braids. In a subsequent paper, we will show that the infinitesimal algebras are the target spaces of any universal finite-type invariants on the respective variants of the flat virtual tangles.
|
2 |
Flat Virtual Pure TanglesChu, Karene Kayin 11 December 2012 (has links)
Virtual knot theory, introduced by Kauffman, is a generalization of classical knot theory of interest because its finite-type invariant theory is potentially a topological interpretation of Etingof and Kazhdan's theory of quantization of Lie bi-algebras. Classical knots inject into virtual knots}, and flat virtual knots is the quotient of virtual knots which equates the real positive and negative crossings, and in this sense is complementary to classical knot theory within virtual knot theory.
We classify flat virtual tangles with no closed components and give bases for its ``infinitesimal'' algebras. The classification of the former can be used as an invariant on virtual tangles with no closed components and virtual braids. In a subsequent paper, we will show that the infinitesimal algebras are the target spaces of any universal finite-type invariants on the respective variants of the flat virtual tangles.
|
3 |
[en] ON THE HOMOLOGY OF THE SPACE OF CURVES IMMERSED IN THE SPHERE WITH CURVATURE CONSTRAINED TO A PRESCRIBED INTERVAL / [pt] SOBRE A HOMOLOGIA DO ESPAÇO DE CURVAS IMERSAS NA ESFERA COM CURVATURA RESTRITA A UM INTERVALO PRESCRITOZHOU CONG 15 December 2017 (has links)
[pt] Enquanto a topologia do espaço de todas as curvas suaves imersas em 2-esfera começando e terminando em pontos dados e direções dadas é bem conhecido, é uma questão aberta entender o tipo de homotopia e dos seus subespaços consistindo as curvas com a curvatura restrita a um intervalo próprio aberto prescrito. Neste tese provamos que, sob certas circunstancias para os pontos e as direções inicial e final, estes subespaços não são homotopicamente equivalente ao espaço todo. Adicionalmente, fornecemos uma construção explicita dos geradores exóticos para algum grupo de homotopia e cohomologia. As dimensões desses geradores dependem das posições e das direções nas extremidades. Uma versão do princípio h foi usada na prova desses resultados. / [en] While the topology of the space of all smooth immersed curves in 2-sphere that start and end at given points in given direction is well known, it is an open problem to understand the homotopy type of its subspaces
consisting of the curves whose geodesic curvatures are constrained to a prescribed proper open interval. In this article we prove that, under certain circumstances for endpoints and end directions, these subspaces are not homotopically equivalent to the whole space. Moreover, we give an explicit construction of exotic generators for some homotopy and cohomology groups. It turns out that the dimensions of these generators depend on endpoints and end directions. A version of the h-principle is used to prove these results.
|
Page generated in 0.0645 seconds