• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyses of Host Specificity, Immune Interactions and New Virulence Candidates of Pseudomonas syringae

Sanina, Natali 26 February 2009 (has links)
We studied the host specificity, interactions with plant immune systems, and virulence factors of the phytopathogenic Type III secretion system-carrying bacterium Pseudomonas syringae. In studying host specificity, we ran growth and pod assays using seventeen pathovars of P. syringae on kidney bean hosts. We tracked bacterial growth numbers over six days and compared pathovar growth patterns. To study immune interactions with host plants, we performed effector-triggered immunity induction and suppression assays with individual effectors in Arabidopsis thaliana to determine whether effector evolutionary age was related to resultant plant immune responses. No correlations were observed. To generate candidate virulence effectors, we sequenced mRNA from seven P. syringae pathovars grown in inducing media and pulled out hits to virulence-related genes.
2

Analyses of Host Specificity, Immune Interactions and New Virulence Candidates of Pseudomonas syringae

Sanina, Natali 26 February 2009 (has links)
We studied the host specificity, interactions with plant immune systems, and virulence factors of the phytopathogenic Type III secretion system-carrying bacterium Pseudomonas syringae. In studying host specificity, we ran growth and pod assays using seventeen pathovars of P. syringae on kidney bean hosts. We tracked bacterial growth numbers over six days and compared pathovar growth patterns. To study immune interactions with host plants, we performed effector-triggered immunity induction and suppression assays with individual effectors in Arabidopsis thaliana to determine whether effector evolutionary age was related to resultant plant immune responses. No correlations were observed. To generate candidate virulence effectors, we sequenced mRNA from seven P. syringae pathovars grown in inducing media and pulled out hits to virulence-related genes.
3

Establishment of Babesia laboratory model and its experimental application

JALOVECKÁ, Marie January 2017 (has links)
Growing incidence of infections caused by the tick-transmitted protozoan parasite Babesia spp. defines babesiosis as an emerging disease from the aspect of human and veterinary medicine. The thesis provides an insight to biology of two main agents of human babesiosis, Babesia microti and Babesia divergens. We introduce here the fully optimized quantification model of Babesia parasite enabling the detailed investigation of the parasite developmental cycle and identification of molecules playing a role in its acquisition and transmission by the vector Ixodes ricinus. Novel and detailed information about Babesia dissemination within the tick tissues are given by newly implemented visualization and quantification techniques. Special emphasis is paid to parasite development in the tick salivary glands, the primary site responsible for parasite transmission from the vector into the host. Using gene-specific silencing we screene the tick immune pathways including effector molecules and evaluate their role in Babesia acquisition. We also provide a detailed view to Babesia parasite sexual commitment by monitoring its kinetics upon various stimuli. Moreover, a new direction of anti-babesial therapy is proposed by validation of the Babesia proteasome as a drug target. Overall, the research presented in the thesis extends the current knowledge of the Babesia parasite biology including molecular interactions at the tick-Babesia interface and thereby could significantly contribute to a potential control of babesiosis.
4

Assaying Microglial Function within Neural Circuits: Implications for Regulating Neural Circuit Excitability

Feinberg, Philip A. 29 April 2022 (has links)
Microglia are the resident macrophage in the central nervous system (CNS) that actively survey their environment and participate in shaping neuronal circuits. Among the transcription factors necessary for microglia development, interferon regulatory factor 8 (IRF8) is a known risk gene for multiple sclerosis and lupus and it has recently been shown to be downregulated in schizophrenia. These studies suggest that lack of microglial IRF8 can subsequently impact neuronal function in disease, but the mechanisms underlying these effects remain unknown. While most studies have focused on IRF8-dependent regulation of immune cell function, little is known about how it impacts neural circuits. To interrogate the impact of disrupted microglial IRF8 signaling on brain circuits, I first show by RNAseq that several genes known to regulate neuronal function are dysregulated basally in Irf8-/- brains. I then found that these molecular changes are reflected in heightened neural excitability and a profound increase in susceptibility to chemically-induced lethal seizures in Irf8-/- mice. Importantly, I also show that developmental synaptic pruning, a key function for microglia, proceeds normally in Irf8-/-mice. Finally, I identified that these IRF8-dependent effects on circuits are due to elevated TNF-α in the CNS as genetic or acute pharmacological blockade of TNF-α in the Irf8-/- CNS rescued the seizure phenotype. These results provide important insights into the consequences of IRF8 signaling and TNF-α on neural circuits. The next steps are to use cell-specific genetic approaches to manipulate this signaling, which I have further developed over the course of this project.

Page generated in 0.1385 seconds