• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 256
  • 27
  • Tagged with
  • 285
  • 270
  • 64
  • 58
  • 58
  • 58
  • 58
  • 58
  • 44
  • 40
  • 40
  • 33
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Mucosal immunity in the respiratory tract : The role of IgA in protection against intracellular pathogens

Rodríguez, Ariane January 2005 (has links)
The lungs and upper airways are mucosal surfaces that are common site for infection with an enormous variety of inhaled pathogens. Therefore, induction of immune responses in the respiratory tract is crucial for protection against respiratory diseases. One of the pathogens infecting the host via the respiratory tract is Mycobacterium Tuberculosis. The reported efficacy of the currently used Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis is highly variable, ranging from 50% against pulmonary tuberculosis to 80% against disseminated tuberculosis. Recently, the current route of vaccination (intradermal) has been considered as a possible factor influencing the protective capacity of the BCG vaccine. In this regard, intradermal route most likely induces protective systemic responses while it fails to induce optimal responses in the lungs. Therefore, our working hypothesis is that vaccination should be directed towards the respiratory mucosal immunity in order to improve the degree of host protection in the lungs. In this thesis we studied the effect of the route of immunization as well as of different mucosal adjuvants on the induction of mucosal immune responses against the mycobacterial surface antigen PstS-1. We found that, the intranasal (i.n.) route of immunization was a more favorable route inducing strong local immune responses, than intraperitoneal (i.p.) route. Indeed, i.n. route immunization, unlike the i.p. route, elicited strong IgA responses in the lungs accompanied by a major influx of CD4+ T cells and a significant local production of IFN-gamma. IgA, being the predominant Ig isotype at mucosal tissues, is considered a major effector molecule involved in defense mechanisms against viral and bacterial pathogens at these sites. Therefore, we investigated the possible role of IgA in the protection of the respiratory mucosa against mycobacterial infections, using mice deficient in IgA and in the polymeric Ig receptor. We show that, deficient mice are more susceptible to mycobacterial infections than wild type mice, thereby demonstrating a role for IgA in protection against mycobacteria. Importantly, our studies revealed a reduced production of protective factors, such as INF-gamma and TNF-alpha in the lungs of deficient mice that was associated with the higher susceptibility seen in these mice compared to wild-type mice. We also conducted challenge experiments against another respiratory pathogen, Chlamydia pneumoniae, using IgA deficient mice. Likewise to mycobacteria, our data support a role for IgA in the protection of the respiratory tract against C. pneumoniae infection. Finally, we investigated the possible mechanisms explaining the reduced pro-inflammatory responses in IgA deficient mice. Our data indicated that IgA deficient mice present a defective response to stimulation with LPS or 19kDa which appears to be both, essentially due to suboptimal stimulation of macrophages and restricted to the lungs.
92

Immunological characteristics of recombinant fragments of the Plasmodium falciparum blood-stage antigen Pf332

Balogun, Halima A. January 2011 (has links)
Effective malaria vaccine might help improve control strategies against malaria, but the complexity of interactions between the parasite and its hosts poses challenges. The asexual blood stage P. falciparum antigen Pf332 has potentials as one of the proteins in understanding the complex host-parasite interactions. The interest in Pf332 as a target for parasite neutralizing antibodies, evolved from previous studies demonstrating that Pf332-reactive antibodies inhibits parasite growth in vitro. The presence of natural P. falciparum infection also indicated that Pf332 has the ability to induce protective antibodies. In paper I, we identified and characterized the immunogenicity of a C-terminal region of Pf332. Immunological analyses carried out with this fragment revealed that rabbit anti-C231 antibodies possess parasite in vitro inhibitory capabilities. In paper II, the functional activity of C231 specific antibodies was confirmed with human-affinity purified antibodies, where the antibodies inhibited late stage parasite development, by the presence of abnormal parasites and disintegrated red cell membranes. Epidemiological data from malaria endemic area of Senegal (Paper III & IV), showed that antibodies were reactive with two different fragments of Pf332 (C231 and DBL). Distribution of anti-C231 antibodies in the IgG subclasses, gave similar levels of IgG2 and IgG3. The levels of anti-C231 antibodies were associated with protection from clinical malaria, but with DBL reactive antibodies IgG3 was associated with protection from clinical malaria. We hereby conclude that antigen Pf332 contains immunogenic epitopes, and is a potential target for parasite neutralizing antibodies. The Pf332 protein should thus be considered as a candidate antigen for inclusion in a subunit P. falciparum malaria vaccine. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Manuscript.
93

The post-polio syndrome : studies of immunology and immunomodulatory intervention /

Gonzalez, Henrik, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 4 uppsatser.
94

Dendritic cells and Plasmodium falciparum: studies in vitro and in the human host

Giusti, Pablo January 2009 (has links)
Malaria is one of the world’s most threatening diseases. About half the world’s population is at risk of infection and the infection claims a million lives each year. A vast majority of the deaths occur in children below the age of 5 in sub-Saharan Africa. Survivors typically acquire immunity only after long time of repeated exposure and immunity is rapidly lost. Immunity is created by the activation of naive T cells and their differentiation into effector cells. The most potent activators of naive T cells are dendritic cells (DCs). The life cycle of DCs is adapted to find and process microbes in order to be able to present their antigens to T cells and thereby activate them. Antigen presentation typically takes place in the lymph nodes and that is why migration to these areas is an essential part of the DC life cycle. Various studies have shown that DC function may be hampered by the malaria parasite or its components. We have investigated activation and migratory capacities of DCs upon in vitro exposure of the malarial pigment hemozoin and Plasmodium falciparum infected red blood cells. Furthermore, we have assessed the activation status of blood DCs in the Fulani, a traditionally nomadic population that respond better to malaria infection and exhibit less clinical symptoms than other ethnicities living under similar conditions, and a neighbouring ethnic group, the Dogon, in Mali. Our results indicate that DCs are semi-activated upon malaria exposure in vitro, including enhanced migratory capacity, partial up-regulation of co-stimulatory markers and no IL-12, which may lead to inappropriate T-cell priming. We also observed that DCs from the Fulani have a higher degree of activation than DCs from the Dogon upon malaria exposure in vivo. We hypothesize that this increased DC activation may be the reason for the relatively increased protection against malaria. Taken together, our findings suggest that improper DC activation may contribute to poor immunity in Malaria.
95

Does IgA play a role in protection against pulmonary tuberculosis?

Tjärnlund, Anna January 2005 (has links)
More than a century after the identification of the tubercle bacillus and the first attempts at vaccination, tuberculosis (TB) still remains one of the world’s most serious infectious diseases. TB is typically a disease of the lung, which serves both as port of entry and as the major site of disease manifestation. The currently used vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is administered parentally and induces a systemic immune response. However, it fails to protect against pulmonary TB, thereby raising the question whether vaccination targeting the mucosal immunity in the lungs could be favourable. The respiratory mucosal surfaces represent the first line of defence against a multitude of pathogens. Secretory IgA (sIgA) in mucosal secretions has an important function by blocking entrance of pathogenic organisms and preventing infections. Yet, another role for IgA in protection against intracellular pathogens has lately been appreciated, when sIgA was demonstrated to neutralize viruses intracellulary. We aimed to investigate the relevance of sIgA in protection against mycobacterial infections using mice deficient for IgA and the polymeric Ig receptor. Mice were immunized intranasally with a mycobacterial antigen which elicited, in wild-type mice, a strong IgA response in mucosal secretions in the respiratory tract. Gene-targeted mice failed to induce the same response and more importantly, were more susceptible to mycobacterial infections in the respiratory tract, as demonstrated by higher bacterial loads in the lungs than wild-type mice. Analysis of immune responses after infection revealed reduced production of proinflammatory, and protective, factors such as IFN-γ and TNF-α in the lungs of deficient mice, which was in concordance with the higher bacterial burden seen in the lungs of these mice. The mechanisms explaining the defective proinflammatory responses in the lungs of deficient mice are not clear but might involve impaired signalling through Fcα receptors, or homologous receptors, which could lead to inadequate activation of pulmonary macrophages. This could subsequently result in suboptimal induction and production of cytokines and chemokines important for attraction and migration of cells to sites of infection in the lungs. Our results demonstrate a role for IgA in protection against mycobacterial infection in the respiratory tract by blocking the entrance of the mycobacterium into the lungs, and/or by modulating the locally induced proinflammatory immune responses.
96

Immune evasion and identification of biomarkers associated with mycobacterial infection

Arko-Mensah, John January 2007 (has links)
No description available.
97

Immune responses in urogenital cancer

Lundgren, Christian January 2015 (has links)
No description available.
98

Cytotoxicity of Vγ9Vδ2 T cells towards Colon Cancer Cells

Grero, Dhanya January 2014 (has links)
Immunotherapies for cancer are widely studied at present. We are currently studying a specific form of “Vγ9Vδ2 T cells” found in the peripheral blood of healthy donors that can be used for the killing of HT-29 colon cancer cells. In order to determine the cytotoxicity of effectors, Vγ9Vδ2 T cells towards target cells, HT-29, it is important to first evaluate the absolute number of Vγ9Vδ2 T cells in a mixed cell population, and next to determine the phenotypic characterization, their activity and cytotoxicity in the presence of target cells. A flow cytometry and bead based assay was developed to evaluate the absolute number of Vγ9Vδ2 T cells in a mixed cell population. Peripheral Blood Mononuclear Cells (PBMCs) were surface stained with monoclonal antibodies (MoAbs) conjugated to fluorochromes that are cross reactive to cell surface markers such as CD3 (T Lymphocytes), γδ2 and were mixed with fluorophore beads. In these assays, no washes and centrifugation steps were performed after the cell surface staining and bead addition. The absolute cell counts were evaluated based on referencing a known concentration of beads. In addition, quantification assays were also performed to measure the cell and bead loss on surface staining that included washes and centrifugation steps and thus found a higher percentage loss of cells than beads. Immunophenotyping assays with four color staining were performed to monitor the phenotypic differentiation of effector cells based on cell surface markers CD27 and CD45RA. Only the naïve (CD27+CDRA+) and terminally differentiated effector memory (CD27-CD45RA+) were identified on the assays performed using Vγ9Vδ2 T cells of different donors. A flow cytometry based cytotoxicity (FCC) assay was completed to monitor the effector cell activity (CD69+) in the presence and absence of target cells and also the cytotoxicity was measured based on % specific lysis of target cells at four different effector to target (E:T) cell ratios. Only preliminary data were obtained for the FCC assay and the development is still in progress.
99

Inflammation and tendon healing

Blomgran, Parmis January 2017 (has links)
Tendons heal through three different overlapping phases; the inflammatory, proliferative and remodeling phase. Many studies have investigated what factors influence healing of tendons. However, little was known about inflammation and the immune cells present during Achilles tendon healing by the time this thesis started. We developed a flow cytometry method for our rat model of tendon healing, which enabled us to study different leukocyte subpopulations during Achilles tendon healing. The general aim of this thesis was to understand more about inflammation and the immune cell populations present during tendon healing and how the immune cell composition changes during normal tendon healing. Moreover, we investigated how different factors that are known to influence tendon healing affected the composition of the immune cell population. First, we described the immune cells during the time course of tendon healing focusing on different subpopulations of macrophages and T cells. Then, we studied how these cells were influenced by reduced mechanical loading. Mechanical loading prolonged the presence of M1 macrophages and delayed the switch to regulatory T cells and M2 macrophages compared to reduced mechanical loading. Next, the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the leukocyte composition revealed that, even though NSAIDs influence the mechanical properties of healing tendon, this effect was not mediated via changes in the leukocyte sub-populations during early and mid-time tendon healing. Further, the effect of corticosteroids during the inflammatory and remodeling phases of tendon healing was an improved healing of tendons and a reduction of CD8a T cells when corticosteroid was administered after the inflammatory phase. Lastly, we investigated if impairment of tendon healing by NSAIDs was related to mechanotransduction or microdamage during mechanical loading and showed that NSAIDs impair tendon healing by reducing the response to microdamage. In conclusion, these studies show that inflammation plays an important role during Achilles tendon healing, and factors that influence healing can also alter the presence or polarization of immune cell populations.
100

Early gut microbiota in relation to cytokine responses and allergic disease

Johansson, Maria January 2011 (has links)
No description available.

Page generated in 0.0456 seconds