• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Potential Toxicity of Silver Nanoparticles to Microbial Communities and Macroinvertebrates

Kusi, Joseph 01 August 2020 (has links)
Silver nanoparticles (AgNPs) are the most common nanomaterials incorporated in commercial products due to their antimicrobial activity. Recently, AgNPs were detected in surface waters suggesting the potential for bioavailability in the aquatic receptor organisms. This dissertation research attempts to understand the potential toxicity of AgNPs on water quality indicators, focusing on the microbial community and amphipods. This study evaluated whether: (1) the antimicrobial properties of AgNPs pose potential risks to microbial communities in pathogen impaired streams; (2) AgNPs can cause a shift in functional diversity and metabolic fingerprinting of microbial communities; (3) survival and growth of Hyalella azteca (amphipods) could be affected by AgNPs; and (4) surface coating agents influence AgNP toxicity in H. azteca. Microbial community responses to AgNPs were assessed using standard plate count, microbial enzyme assays, and carbon substrate utilization with Biolog EcoPlates™. Ten-day and 28-d toxicity tests were conducted in a static system to assess AgNP effects on H. azteca. AgNPs caused a 69% decrease in microbial concentration and a 77% decrease in β-glucosidase activity at 0.32 mg Ag kg-1 dry sediment. The substrate utilization pattern of the microbial community was altered by AgNPs at 0.33 mg Ag kg-1 dry sediment. Ten-day LC50s for the survival of H. azteca were 3.3, 9.2, and 230.0 µg Ag L-1 for AgNO3, citrate-AgNP, and PVP-AgNP, respectively, whereas the 28-d LC50s were 3.0, 3.5, and 66.0 µg Ag L-1 for AgNO3, citrate-AgNP, and PVP-AgNP, respectively. The EC20s for growth (calculated as biomass) for the 10-d test were 1.6, 4.7, and 188.1 µg Ag L-1 for AgNO3, citrate-AgNP, and PVP-AgNPs; while the 28-d EC20s for AgNO3, citrate-AgNP and PVP-AgNP were 3.2, 0.5, and < 50 µg Ag L-1. The NOECS for dry weight were 4 and 1, and 100 µg Ag L-1, while those for biomass were 2, 0.5, and < 50 µg Ag L-1 for AgNO3, citrate-AgNP, and PVP-AgNP, respectively. The overall toxicity followed the trend: AgNO3 > citrate-AgNP > PVP-AgNP. The studies suggest that AgNPs pose potential risks to microbial communities and epibenthic macroinvertebrates used as bioindicators of water quality to protect public health and ecosystem health.
2

Analysis of Aerial Multispectral Imagery to Assess Water Quality Parameters of Mississippi Water Bodies

Irvin, Shane Adison 11 August 2012 (has links)
The goal of this study was to demonstrate the application of aerial imagery as a tool in detecting water quality indicators in a three mile segment of Tibbee Creek in, Clay County, Mississippi. Water samples from 10 transects were collected per sampling date over two periods in 2010 and 2011. Temperature and dissolved oxygen (DO) were measured at each point, and water samples were tested for turbidity and total suspended solids (TSS). Relative reflectance was extracted from high resolution (0.5 meter) multispectral aerial images. A regression model was developed for turbidity and TSS as a function of values for specific sampling dates. The best model was used to predict turbidity and TSS using datasets outside the original model date. The development of an appropriate predictive model for water quality assessment based on the relative reflectance of aerial imagery is affected by the quality of imagery and time of sampling.
3

Emerging Environmental Contaminants (Silver Nanoparticles) Altered the Catabolic Capability and Metabolic Fingerprinting of Microbial Communities

Kusi, Joseph, Scheuerman, Phillip R., Maier, Kurt J. 01 November 2020 (has links)
Microbial community functional diversity enhances the degradation of organic matter and pollutants in the environment, but there is a growing concern that these ecosystem services may be altered by the introduction of emerging environmental contaminants including silver nanoparticles (AgNPs) into aquatic systems. We added 0, 25, 50, 75, 100, and 125 mg L−1 (nominal concentrations) of citrate-AgNP and polyvinylpyrrolidone-AgNP (PVP-AgNP) each to freshwater sediment and examined their antimicrobial effects on microbial communities using community-level physiological profiling. The results showed that citrate-AgNP decreased the overall microbial catabolic activity by 80% from 1.16 ± 0.02 to 0.23 ± 08 while PVP-AgNP decreased the catabolic activity by 51% from 1.25 ± 0.07 to 0.61 ± 0.19 at 125 mg L−1. Citrate-AgNP and PVP-AgNP caused a statistically significant reduction in substrate richness and substrate diversity that decreased microbial functional diversity. AgNPs decreased microbial catabolic capability and functional diversity at concentrations ranging from 0.12 ± 0.04 to 0.43 ± 0.07 mg Ag kg-1 which are lower than the predicted concentrations in freshwater sediment. To our knowledge, this is the first study to demonstrate inhibition of microbial functional diversity by citrate-AgNP and PVP-AgNP in a pathogen impaired stream. Citrate-AgNP caused greater inhibition of carbon substrate utilization but amino acids, carbohydrates, and carboxylic acids were the most affected carbon groups which led to a shift in the metabolic fingerprint pattern of the microbial community. AgNPs decreased the catabolic capability and the ability of the microbial community to degrade organic matter and a variety of pollutants in the environment.

Page generated in 0.1075 seconds