1 |
A Semantic Conception of TruthLumpkin, Jonathan 01 May 2014 (has links)
I explore three main points in Alfred Tarski’s Semantic Conception of Truth and the Foundation of Theoretical Semantics: (1) his physicalist program, (2) a general theory of truth, and (3) the necessity of a metalanguage when defining truth. Hartry Field argued that Tarski’s theory of truth failed to accomplish what it set out to do, which was to ground truth and semantics in physicalist terms. I argue that Tarski has been adequately defended by Richard Kirkham. Development of logic in the past three decades has created a shift away from Fregean and Russellian understandings of quantification to an independent conception of quantification in independence-friendly first-order logic. This shift has changed some of the assumptions that led to Tarski’s Impossibility Theorem.
|
2 |
Essays on Mathematical EconomicsNinjbat, Uuganbaatar January 2012 (has links)
<p>Diss. Stockholm : Stockholm School of Economics, 2012. Introduction together with 6 papers</p>
|
3 |
O Teorema da impossibilidade de Arrow e suas consequências sobre sistemas eleitoraisCastelluber, Jaqueline Dayanne Capucci January 2017 (has links)
Orientador: Prof. Dr. Roberto Venegeroles Nascimento / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , 2017. / Neste trabalho foram apresentados, contextualmente, os métodos de "eleições por ordem de
mérito" e de "eleições particulares", ambos propostos em [1] pelo matemático francês Jean
Charles Borda (1733 ¿ 1799) em 1770 como alternativa ao "método usual de contagem de
votos". Borba percebeu que o "método usual de contagem de votos" apresenta falhas porque
em eleições com mais de dois candidatos pode-se não reproduzir adequadamente a preferência da maioria dos eleitores. Posteriormente, foi apresentado o "método de Condorcet", proposto em [2] pelo matemático francês Marie Jean Antonie Nicolas Caritat de Condorcet (1743 ¿ 1794) em 1785 para responder às falhas identificadas nos métodos propostos por Borda e, consequentemente, no "método usual de contagem de votos". Condorcet percebeu que, embora menos que o "método usual de contagem de votos", os métodos propostos por Borda também apresentam falhas porque é possível que sejam utilizados votos ou candidatos de maneira estratégica para manipular o resultado da eleição. O referido método foi apresentado com base no método publicado pelo matemático e economista americano Hobart Peyton Young (1945 ¿) em 1988 na obra "Condorcet¿s Theory of Voting" [3] pelo American Political Science Review. Por conseguinte, foram apresentadas três demonstrações distintas do "Teorema da Impossibilidade de Arrow", proposto em [4] pelo matemático e economista americano Kenneth Joseph Arrow (1921 ¿ 2017) em 1950, no qual, mostrou que considerando determinadas condições, em eleições com mais de dois candidatos, não há um método democraticamente consistente de escolher um candidato vencedor, pois não existe uma forma perfeita de construir uma preferência social a partir das preferências individuais dos eleitores. As referidas demonstrações foram apresentadas com base nas demonstrações publicadas pelo matemático e economista americano John Geanakoplos (1955 ¿) em 2005 no artigo "Three brief proofs of Arrow¿s Impossibility Theorem" [5] pelo Journal Economic Theory. Por fim, foram apresentadas as conclusões e consequências do "Teorema da Impossibilidade de Arrow" sobre sistemas eleitorais. / In this work were presented, contextually, the methods of "elections in order of merit" and
"private elections", both proposed in [1] by the french mathematician Jean Charles Borda
(1733 ¿ 1799) in 1770 as an alternative to the "usual method of counting votes". Borda
realized that the "usual method of counting votes" presents flaws because in elections with
more than two candidates it doesn¿t reproduce the adequately preference of the majority
of voters. Posteriorly, the "Condorcet method" was presented, proposed in [2] by the french
mathematician Marie Jean Antonie Nicolas Caritat de Condorcet (1743 ¿ 1794) in 1785 to
respond to the flaws identified in the methods proposed by Borda and, consequently, in the
"usual method of counting votes". Condorcet realized that, although less than the "usual
method of counting votes", the methods proposed by Borda also present flaws because it is
possible that votes or candidates are used strategically to manipulate the election result.
This method was presented based on the method published by the american mathematician
and economist Hobart Peyton Young (1945 - ...) in 1988 in the work "Condorcet¿s
Theory of Voting" [3] by the American Political Science Review. Therefore, three distinct
demonstrations of the "Arrow Impossibility Theorem" were presented, proposed in [4] by
the american mathematician and economist Kenneth Joseph Arrow (1921 ¿ 2017) in 1950,
in which, it has been shown that given certain conditions, in elections with more than two
candidates, there is no democratically consistent method of choosing a winning candidate,
as there is no perfect way to build a social preference based on the individual preferences
of voters. These statements were presented based on the statements publishe by the american mathematician and economist John Geanakoplos (1955 - ...) in 2005 in the article
"Three brief proofs of Arrow¿s Impossibility Theorem" [5] by the Journal Economic Theory.
Finally, the conclusions and consequences of "Arrow¿s Impossibility Theorem" on electoral
systems were presented.
|
Page generated in 0.0853 seconds