• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation diophantienne dans les variétés abéliennes

Pégourié-Gonnard, Manuel 22 October 2012 (has links) (PDF)
Le but de la thèse est d'établir une version quantitative du théorème suivant : toute sous-variété d'une variété abélienne n'admet qu'un nombre fini d'approximations d'exposant strictement positif. Cet énoncé a été obtenu par Faltings en 1991 ; la majeure partie des outils qu'il utilise sont communs avec sa preuve de l'ex-conjecture de Mordell-Lang. Il implique en particulier une extension du théorème de Siegel conjecturée par Lang : toute variété abélienne n'a qu'un nombre fini de points entiers. On utilise la méthode de Vojta en suivant les travaux de Rémond (version quantitative de Mordell-Lang) : le coeur de la thèse consiste à établir une inégalité à la Vojta explicite ; on établit ensuite une inégalité à la Mumford avant d'en déduire un décompte des approximations exceptionnelles. Toutefois, le cas où la variété approchée contient des translatés de sous-variétés abéliennes non nulles nécessite d'imposer une condition supplémentaire pour parvenir à un décompte explicite : sans ces conditions, un tel décompte impliquerait dans certains cas un résultat effectif, qui semble hors de portée à l'heure actuelle.

Page generated in 0.071 seconds