• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genome-scale Metabolic Network Reconstruction and Constraint-based Flux Balance Analysis of Toxoplasma gondii

Song, Carl Yulun 27 November 2012 (has links)
The increasing prevalence of apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium represents a significant global healthcare burden. Treatment options are increasingly limited due to the emergence of new resistant strains. We postulate that parasites have evolved distinct metabolic strategies critical for growth and survival during human infections, and therefore susceptible to drug targeting using a systematic approach. I developed iCS306, a fully characterized metabolic network reconstruction of the model organism Toxoplasma gondii via extensive curation of available genomic and biochemical data. Using available microarray data, metabolic constraints for six different clinical strains of Toxoplasma were modeled. I conducted various in silico experiments using flux balance analysis in order to identify essential metabolic processes, and to illustrate the differences in metabolic behaviour across Toxoplasma strains. The results elucidate probable explanations for the underlying mechanisms which account for the similarities and differences among strains of Toxoplasma, and among species of Apicomplexa.
2

Genome-scale Metabolic Network Reconstruction and Constraint-based Flux Balance Analysis of Toxoplasma gondii

Song, Carl Yulun 27 November 2012 (has links)
The increasing prevalence of apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium represents a significant global healthcare burden. Treatment options are increasingly limited due to the emergence of new resistant strains. We postulate that parasites have evolved distinct metabolic strategies critical for growth and survival during human infections, and therefore susceptible to drug targeting using a systematic approach. I developed iCS306, a fully characterized metabolic network reconstruction of the model organism Toxoplasma gondii via extensive curation of available genomic and biochemical data. Using available microarray data, metabolic constraints for six different clinical strains of Toxoplasma were modeled. I conducted various in silico experiments using flux balance analysis in order to identify essential metabolic processes, and to illustrate the differences in metabolic behaviour across Toxoplasma strains. The results elucidate probable explanations for the underlying mechanisms which account for the similarities and differences among strains of Toxoplasma, and among species of Apicomplexa.

Page generated in 0.0667 seconds