Spelling suggestions: "subject:"inn site"" "subject:"iin site""
221 |
In Situ Groundwater Remediation using Enricher Reactor-Permeable Reactive BiobarrierSomayajula, Sreerama Murthy Kasi January 2012 (has links)
Permeable reactive biobarrier (PRBB) is a flow-through zone where microorganisms degrade contaminants in groundwater. Discontinuous presence of contaminants in groundwater causes performance loss of a PRBB in removing the target contaminant. A novel enricher reactor (ER) - PRBB system was developed to treat groundwater with contaminants that reappear after an absence period. ER is an offline reactor for enriching contaminant degraders, which were used for augmenting PRBB to maintain its performance after a period of contaminant absence. The ER-PRBB concept was initially applied to remove benzene that reappeared after absence periods of 10 and 25 days. PRBBs without ER augmentation experienced performance losses of up to 15% higher than ER-PRBBs. The role of inducer compounds in the ER to enrich bacteria that can degrade a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated with an objective to minimize the use of toxic chemicals as inducers. Three inducer types were studied: individual BTEX compounds, BTEX mixture, and benzoate (a non toxic and a common intermediate for BTEX biodegradation). Complete BTEX removal was observed for degraders enriched on all three inducer types; however, the removal rates were dependent on the inducer type. Degraders enriched on toluene and BTEX had the highest degradation rates for BTEX of 0.006 to 0.014 day-1 and 0.006 to 0.012 day-1, respectively, while degraders enriched on benzoate showed the lowest degradation rates of 0.004 to 0.009 day-1.
The ER-PRBB technique was finally applied to address the performance loss of a PRBB due to inhibition interactions among BTEX, when the mixture reappeared after a 10 day absence period. The ER-PRBBs experienced minimal to no performance loss, while PRBBs without ER augmentation experienced performance losses between 11% and 35%. Presence of ethanol during the BTEX absence period increased the performance loss of PRBB for benzene removal. PRBBs augmented with degraders enriched on toluene alone overcame the inhibition interaction between benzene and toluene indicating that toluene can be used as a single effective inducer in an ER. The ER-PRBB was demonstrated to be a promising remediation technique and has potential for applications to a wide range of organic contaminants.
|
222 |
Příprava a vlastnosti stříbrných nanočástic na kolagenové matrici / Preparation and properties of silver nanoparticles on collagen matrixKonečná, Zuzana January 2016 (has links)
Cílem předložené diplomové práce byla in-situ příprava stříbrných nanočástic na kolagenové matrici jako antibakteriálního povlaku a studie vlivu podmínek přípravy na vlastnosti nanočástic, zejména jejich velikost, tvar, homogenita jejich distribuce a antibakteriální aktivita. V rámci práce byla rovněž sledována kinetika redukce stříbrných nanočástic z dusičnanu stříbrného a vliv teploty na její průběh. Připravený materiál a jeho vlastnosti byly analyzovány pomocí různých technik. UV-VIS absorpčních vlastností stříbra bylo využito pro kinetické studie redukce a uvolňování nanočástic. Pomocí rastrovací elektronové mikroskopie byla vyhodnocena homogenita stříbrného povlaku a přibližná velikost částic a jejich aglomerátů. Velikostní distribuce nanočástic byla pak přesně stanovena pomocí dynamického rozptylu světla. Pomocí infračervené spektrometrie s Fourierovou transformací s technikou úplného zeslabeného odrazu byla sledována interakce stříbra s funkčními, zejména karboxylovými skupinami. Termogravimetricky byla stanovena tepelná stabilita a procentuální obsah stříbra v materiálu. Vliv AgNPs povlaku na 3D strukturu kolagenního scaffoldu a fázový kontrast pro 3D zobrazovací techniky byl zkoumán pomocí rentgenové výpočetní nanotomografie. V neposlední řadě byla také stanovena antibakteriální aktivita připraveného materiálu a její závislost na koncentraci stříbra.
|
223 |
In Situ Tomography of Microcracking in Cross Ply Carbon Fiber Composites with Pre-existing Debonding DamageTraudes, Daniel 07 1900 (has links)
Carbon fiber based composites are an essential material in weight-critical applications
such as in the aerospace industry. However, these materials are susceptible to
damage such as matrix microcracking and fiber/matrix debonding (diffuse damage),
which occurs at stresses much lower than the failure stress.
A T700/M21 [0/90]s laminate was tensile loaded to introduce diffuse damage and
prepared for a study on the initiation of transverse microcracks. The material was
tensile loaded in a [+45/-45]s orientation to induce diffuse damage. A diffuse damage
indicator was developed by measuring the decrease in shear stiffness. Samples with
diffuse damage levels of 0, 0.05, 0.10, 0.15, 0.20, and 0.25 were prepared to be tensile
tested in a [0/90]s orientation to induce microcracks.
A successful development of the microcracking test procedure was performed. The
edge of the material was studied with optical microscopy and x-ray to establish the
structure of the fiber bundle geometry when undamaged. A sample containing microcracks
was treated with diiodomethane dye penetrant, which successfully highlighted
microcracks during x-ray imaging. The application time was not sufficient to produce consistent x-ray images over time, so a 45 minute soak time was recommended
instead. The same damaged sample was subjected to a tomographic scan without
a dye penetrant and while unloaded. Transverse microcracks were successfully identified from the data, although the results were not clean enough and likely omitted
some smaller microcracks. Results are expected to be cleaner if performed during
tensile testing.
Future tensile testing will quantify the induced crack density of samples containing
various degrees of initial diffuse damage, either using x-rays with a dye penetrant or
using x-ray microtomography.
|
224 |
In-situ reduktivní dehalogenace / In-situ reductive dehalogenationDvořák, Petr January 2018 (has links)
This master thesis is focused on groundwater remediation of chlorinated ethylenes and methanes in the area of chemical factory Spolchemie in the Czech Republic, Ústí nad Labem city. For these purposes nano zero valent iron particles were used. For the remediation two separate applications of different types of particles together in suspension with tracer (lithium chloride), were carried out. The results from the first application were evaluated by the supervisor of this thesis and are briefly summarized and discussed together with the second application which was evaluated by the author of this thesis. Second application of particles was carried out in October 2015 and observed for 424 days. Observation consisted of monitoring of groundwater level, physical-chemical parameters and collection of water samples for the analysis of concentrations of chlorinated hydrocarbons, their degradation products and several chosen ions. Nanoiron particles had the assumed effect onto the physical-chemical parameters and reduction of contamination. The application of tracer had proven the expected groundwater flow and made a possibility to distinguish between the process of reductive dehalogenation and dilution caused by the injected water, the dilution did not exceeded 5 % in most monitored points. Other...
|
225 |
Structure-Directing Infuence of Hydrogen on the Formation of Hydrides of Palladium and Rhodium Compounds Based on In Situ StudiesGötze, André 11 December 2018 (has links)
No description available.
|
226 |
In-situ Radiography of Hydrogen Porosity Growth and Development inAluminum Welds.Barraza, Alexyia Marie January 2021 (has links)
No description available.
|
227 |
In-situ subsurface density estimations using a seismic techniqueFourie, Christoffel Johannes Stephanus 16 January 2009 (has links)
A new geophysical method was developed to satisfy a need for in-situ density measurements. Various situations, such as a gravity dam wall requires that density measurements should be done without damage to the structure. The sample volume should also not be that large in order to be sensitive enough for variations. This method measures the in-situ density of the weathered layer and other man made structures, using seismic waves in three directions. The seismic waves utilized are P-waves and S-waves. It is however surface waves that are treated like body waves because they do not separate at this shallow depth. These waves are very sensitive to the attenuation factor, which is in turn sensitive to certain physical properties of the propagation medium. This factor is utilsed when the multi layer problem is encountered. The maximum depth of exploration is 2-5m and depends solely on the seismic skin depth. This method utilises a large base plate. The source is a large sledge hammer and shots are done at each side of the base plate. Different dominant frequencies are identified and used to calculate the densities of the layers associated with that specific frequency. The velocities of the subsurface are determined by small seismic refraction surveys. The method will find application mainly in the civil and engineering geology fields. The main application will be to determine subsurface densities and small movement elasticity modulli for engineers to aid in obtaining adequate design parameters. Case studies on three different geologic environments are presented. The results indicate that this method will be useful, although certain modifications are recommended to make this method even faster and more user friendly. / Thesis (PhD)--University of Pretoria, 2007. / Geology / unrestricted
|
228 |
Coupling Permanganate Oxidation With Microbial Dechlorination of TetrachloroetheneSahl, Jason W., Munakata-Marr, Junko, Crimi, Michelle L., Siegrist, Robert L. 01 January 2007 (has links)
For sites contaminated with chloroethene non-aqueousphase liquids, designing a remediation system that couples in situ chemical oxidation (ISCO) with potassium permanganate (KMnO4) and microbial dechlorination may be complicated because of the potentially adverse effects of ISCO on anaerobic bioremediation processes. Therefore, one-dimensional column studies were conducted to understand the effect of permanganate oxidation on tetrachloroethene (PCE) dechlorination by the anaerobic mixed culture KB-1. Following the confirmation of PCE dechlorination, KMnO4 was applied to all columns at a range of concentrations and application velocities to simulate varied distances from oxidant injection. Immediately following oxidation, reductive dechlorination was inhibited; however, after passing several pore volumes of sterile growth medium through the columns after oxidation, a rebound of PCE dechlorination activity was observed in every inoculated column without the need to reinoculate. The volume of medium required for a rebound of dechlorination activity differed from 1.1 to 8.1 pore volumes (at a groundwater velocity of 4 cm/d), depending on the specific condition of oxidant application.
|
229 |
Transfer Hydrogenation: Employing a Simple, In Situ Prepared Catalytic SystemAng, Eleanor Pei Ling 04 1900 (has links)
Transfer hydrogenation has been recognized to be an important synthetic method in both academic and industrial research to obtain valuable products including alcohols. Transition metal catalysts based on precious metals, such as Ru, Rh and Ir, are typically employed for this process. In recent years, iron-based catalysts have attracted considerable attention as a greener and more sustainable alternative since iron is earth abundant, inexpensive and non-toxic. In this work, a combination of iron disulfide with chelating bipyridine ligand was found to be effective for the transfer hydrogenation of a variety of ketones to the corresponding alcohols in the presence of a simple base. It provided a convenient and economical way to conduct transfer hydrogenation. A plausible role of sulfide next to the metal center in facilitating the catalytic reaction is demonstrated.
|
230 |
In situ calibration for load cells in bipedal 3D printed robot utilizing Computer-Aided Design modelLe, Tung Xuan 07 August 2023 (has links)
Load cells are very important components in a robot system. They help the robot to get feedback from the environment around it and generate control signals accordingly. However, like every other sensor, load cells need to be calibrated over time to maintain their accuracy and precision. In the current method, they need to be detached from the robot. Then known weights are hung below the load cells to get the raw signal from the load cells. These two types of values will then be used to generate the equations that convert the raw signal to the force values. This is a challenge as not many robots are maintenance-friendly so detaching the load cells can take a lot of time, not to mention the process can damage the load cells if not conducted carefully. This research project utilizes mechanical simulation to calculate the known force values acting on the load cells without taking them out of the robot system. Then these force values are used for the calibration process. In this thesis, the in situ calibration method will be conducted on the actuator-controlled pendulum, and a bipedal robot when it is hanging on the gantry and standing on the ground. Also, since mechanical simulation requires a lot of computational power, a geometry simplification method will also be introduced so this in situ calibration method can be used for ordinary personal computers. The results show that the new calibration method is easy to work with, the force values still meet the requirements for calibration, and the computer only needs 10-12 seconds to run each simulation. / Master of Science / A robotic system usually need the load cell to generate the correct control signal. However, the load cell needs to be calibrated over time for maintenance. The current calibration method requires the load cell to be detached from the robot so the user can apply known forces to the load cell. This thesis introduces an in situ calibration method that can calculate forces that are applied to the load cell so the user does not need to detach the load cell from the robot. An optimization method is also introduced to make the calibration process can be done on an ordinary personal computer.
|
Page generated in 0.0522 seconds