• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phenotypic expansion in KIF1A-related dominant disorders: A description of novel variants and review of published cases

Montenegro-Garreaud, Ximena, Hansen, Adam W., Khayat, Michael M., Chander, Varuna, Grochowski, Christopher M., Jiang, Yunyun, Li, He, Mitani, Tadahiro, Kessler, Elena, Jayaseelan, Joy, Shen, Hua, Gezdirici, Alper, Pehlivan, Davut, Meng, Qingchang, Rosenfeld, Jill A., Jhangiani, Shalini N., Madan-Khetarpal, Suneeta, Scott, Daryl A., Abarca-Barriga, Hugo, Trubnykova, Milana, Gingras, Marie Claude, Muzny, Donna M., Posey, Jennifer E., Liu, Pengfei, Lupski, James R., Gibbs, Richard A. 01 December 2020 (has links)
KIF1A is a molecular motor for membrane-bound cargo important to the development and survival of sensory neurons. KIF1A dysfunction has been associated with several Mendelian disorders with a spectrum of overlapping phenotypes, ranging from spastic paraplegia to intellectual disability. We present a novel pathogenic in-frame deletion in the KIF1A molecular motor domain inherited by two affected siblings from an unaffected mother with apparent germline mosaicism. We identified eight additional cases with heterozygous, pathogenic KIF1A variants ascertained from a local data lake. Our data provide evidence for the expansion of KIF1A-associated phenotypes to include hip subluxation and dystonia as well as phenotypes observed in only a single case: gelastic cataplexy, coxa valga, and double collecting system. We review the literature and suggest that KIF1A dysfunction is better understood as a single neuromuscular disorder with variable involvement of other organ systems than a set of discrete disorders converging at a single locus. / National Institutes of Health / Revisión por pares
2

Genomics and Molecular Approaches to Delineate Pathogenesis of Aeromonas Hydrophila, Aeromonas Veronii, and Edwardsiella Piscicida Infections in Fish

Tekedar, Hasan Cihad 08 December 2017 (has links)
The U.S. aquaculture industry has become well established in the last three decades, and channel catfish aquaculture is the most significant component of this industry. Virulent Aeromonas hydrophila has been a serious disease problem since 2009 in the U.S. catfish aquaculture, and Aeromonas veronii and Edwardsiella piscicida are emerging pathogens of catfish. Therefore, this study aims to address fundamental questions on virulence mechanisms of these three fish pathogens, which I expect to support the development of control measures for preventing these diseases. In this study, E. piscicida and virulent Aeromonas hydrophila (vAh) genomes were sequenced, and comparative analyses were conducted using the genome sequences. Average nucleotide identity (ANI) calculations showed that E. piscicida strains share high sequence identity, yet they are from diverse host species and geographic regions. vAh isolates share very high sequence identity, while the other A. hydrophila genomes are more distantly related to this clonal group. We applied several comparative genomics approaches to evaluate E. piscicida genomes and E. ictaluri genomes, providing valuable information about unique and shared features of these two important pathogens in the Edwardsiella genus. Comprehensive secretion system analysis of 55 A. hydrophila genomes and deletion of tssD and tssI core elements of T6SS from vAh isolate ML09-119 has provided new knowledge. We sequenced the genome of virulent Aeromonas veronii strain ML09-123 from catfish indicated that it was highly similar to an A. veronii strain from China. Evaluation of all 41 A. veronii genomes available in the National Center for Biotechnology Information (NCBI) provides a base platform to investigate in detail the molecular mechanism of A. veronii biology and virulence. Lastly, we constructed deletion mutants vAhΔsia, vAhΔent, vAhΔcol, vAhΔhfq1, vAhΔhfq2, and vAhΔhfq1Δhfq2 to determine roles of A. hydrophila secreted proteins and regulatory proteins on virulence in catfish. Results showed that sialidase (vAhΔsia) and enterotoxin (vAhΔent) mutants were significantly attenuated.

Page generated in 0.0927 seconds