• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration d'oxydes et de sulfures à grande bande interdite pour les cellules photovoltaïques à base de Cu(In,Ga)Se2 par dépôt chimique en phase vapeur par flux alternés (ALD) activé par plasma / Synthesis of large band gap oxides and sulfides for Cu(In,Ga)Se2 thin film solar cells by Atomic Layer Deposition (ALD) and Plasma Enhanced - ALD (PEALD)

Bugot, Cathy 29 October 2015 (has links)
La thèse présentée ici a pour objectif de développer des matériaux innovants et performants pour la fabrication de la couche tampon des cellules photovoltaïques en couches minces à base de Cu(In,Ga)Se2 (CIGS). Pour la première fois, des couches minces d'In2(S,O)3 et de Zn(O,S) ont été réalisées par dépôt chimique en phase vapeur par flux alternés assisté par plasma afin de remplacer la couche tampon traditionnelle en sulfure de cadmium. En apportant des espèces plus réactives, cette méthode permet d'effectuer des réactions qui ne pourraient pas avoir lieu par procédé thermique. La comparaison des deux procédés a permis l'évaluation de leurs atouts et de leurs contraintes. Par exemple, l'In2(S,O)3 n'a pu être synthétisé que par cette méthode, via des mécanismes surfaciques d'échange entre des radicaux d'oxygène et le soufre de l'In2S3. Pour augmenter les performances des cellules CIGS/In2(S,O)3 jusqu'à 11,9%, le procédé de synthèse initial a été amélioré en corrélant les études de Spectroscopie Photoélectronique X et celles de spectrométrie de masse. En parallèle, il a été montré que la température de croissance avait un effet notable sur les propriétés opto-électroniques des cellules CIGS/Zn(O,S) et qu'il existait des optimums de performance à basse (Tdep < 160°C) et haute (Tdep > 200°C) températures. L'optimum situé à basse température s'explique par les propriétés favorables des couches minces de Zn(O,S) synthétisées par procédé thermique, tandis que celui situé à haute température est dû à l'existence de mécanismes d'interdiffusion à l'interface Zn(O,S)/CIGS. Un rendement de 15,6% a pu ainsi être obtenu. / This thesis focuses on the development of innovative and efficient materials for the fabrication of the buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cells. For the first time, In2(S,O)3 and Zn(O,S) thin films were synthesized by Plasma Enhanced Atomic Layer Deposition (PEALD) in order to substitute the conventional cadmium sulfide buffer layer. By creating reactive species, this deposition technique allows reactions which could not be possible using thermal ALD. The comparison of both methods allows the evaluation of their respective assets and constraints. For instance, In2(S,O)3 thin films could only be achieved using PEALD through exchange reaction mechanisms between oxygen radicals from the plasma and sulfur atoms of In2S3 growing film. In order to obtain CIGS/In2(S,O)3 solar cells with efficiencies of 11.9%, the initial deposition process was improved by correlating X-Ray Photoelectron Spectroscopy and Quadrupole Mass Spectrometry analyses. At the same time, the deposition temperature proved to have a crucial effect on CIGS/Zn(O,S)-ALD device opto-electronic properties and we evidenced the existence of two deposition temperature ranges, at Tdep < 160°C and Tdep > 200°C, where the performances are enhanced. In the low temperature range, the high performances were explained by specific Zn(O,S) properties, while at high temperature they are enhanced by favorable interdiffusion mechanisms at the CIGS/Zn(O,S) interface. Increasing the deposition temperature allowed the fabrication of CIGS/Zn(O,S) solar cells with efficiencies up to 15.6%.

Page generated in 0.0467 seconds