Spelling suggestions: "subject:"inclusion rigidez"" "subject:"inclusion rigide""
1 |
Renforcement par géosynthétiques des remblais sur inclusions rigides, étude expérimentale en vraie grandeur et analyse numérique.Le Hello, Bastien 26 June 2007 (has links) (PDF)
Les sols à faible portance, posent de réels problèmes pour la construction des ouvrages de génie civil (tassements différentiels importants). Actuellement il existe de nombreuses solutions pour améliorer la qualité de ces sols dont les techniques de renforcement par pieux. Parmi ces méthodes l'une d'elles, en pleine expansion dans certains pays, consiste à ajouter au dessus de réseau de pieux une nappe de renfort géosynthétique. Dans cette technique les charges dues au remblai sont transmises aux pieux soit directement par le sol de remblai par report de charge, soit indirectement par l'intermédiaire de la nappe géosynthétique par effet membrane. <br /><br />L'objectif de cette étude est d'une part de mieux comprendre le comportement de ces ouvrages pour permettre leur dimensionnement et d'autre part de tester un dispositif expérimental permettant de suivre dans le temps le comportement de l'ouvrage (système de mesures par fibres optiques Géodetect). Pour atteindre cet objectif, un programme de recherche regroupant des expérimentations et des modélisations numériques, a été entrepris en collaboration avec la société Tencate. Des expérimentations en vraie grandeur ont été réalisées à Kuala Lumpur en Malaisie dans des conditions spécifiques pour étudier le comportement en membrane du géosynthétique au-dessus du réseau de pieux et pour appréhender les phénomènes de report de charge. <br /><br />Une modélisation originale couplant éléments finis et éléments discrets a été développée pour compléter l'étude expérimentale. L'approche continue a permis de modéliser efficacement le comportement en membrane des nappes géosynthétiques. Quant à l'approche discrète, elle a permis d'analyser les mécanismes de transfert de charge dans le remblai. La comparaison et l'analyse des résultats ont permis de mieux comprendre ces mécanismes et de mieux appréhender le dimensionnement de ces ouvrages.
|
2 |
Comportement en zone sismique des inclusions rigides : Analyse de l’interaction sol-inclusion-matelas de répartition – structure / Rigid inclusions comportment in seismic zones : Analysis of soil-gravel layer-inclusions-structure interactionHatem, Alia 02 December 2009 (has links)
Le présent travail comporte une analyse du comportement sismique des sols renforcés par des inclusions rigides. L’étude est effectuée à l’aide d’une modélisation numérique tridimensionnelle par différences finies de l’interaction sol-matelas-inclusions-structure. Le comportement du sol est supposé de type élastoplastique avec un amortissement de type Rayleigh. Le travail est présenté en trois chapitres.Le premier chapitre comporte une synthèse des travaux réalisés sur les inclusions rigides et sur l’analyse de leur comportement en zone sismique. Il présente d’abord la technologie de renforcement par inclusions rigides ainsi que son utilisation et les méthodes de calcul sous chargement statique. Ensuite, il donne une synthèse des approches utilisées pour l’analyse de l’interaction sol-structure sous chargement sismique, et plus particulièrement pour les groupes de pieux et les inclusions rigides.Le second chapitre est consacré à l’analyse de l’interaction cinématique du système sol-matelas-inclusions-structure. L’analyse est effectuée à l’aide d’une approche globale qui consiste à calculer la réponse de l’ensemble des éléments du système à un chargement sismique. Elle est réalisée à l’aide d’une modélisation tridimensionnelle et non linéaire du système de renforcement. Le chapitre est composé de trois parties. La première expose le modèle numérique utilisé, la seconde présente une analyse d’un sol renforcé par un groupe de 2x2 inclusions rigides, la dernière est consacrée à une étude de l’influence de principaux paramètres sur la réponse sismique du groupe d’inclusions rigides.Le dernier chapitre est consacré à l’étude de l’influence de la présence de la structure sur l’interaction sol-matelas-inclusions-structure. L'accent est mis sur l’influence des paramètres majeurs tels que les caractéristiques géométriques et mécaniques du matelas, la rigidité des inclusions, les conditions de liaison inclusions-matelas et l’amplitude du chargement. Ce chapitre donne aussi une comparaison entre le comportement sismique des inclusions rigides avec celui d’un groupe de colonnes de module mixte (CMM) et d’un groupe de pieux. / This work includes an analysis of seismic behaviour of soft soil improved by vertical rigid inclusions. The study is conducted by using a three-dimensional finite-difference numerical modelling of soil-gravel layer-inclusions-structure interaction. Soil media is assumed to be elastoplastic with Rayleigh damping. The work is presented in three chapters. The first chapter deals with a review of the literature on research previously conducted on rigid inclusions and their behaviour in seismic areas. Firstly, the technology of soft soil improvement by vertical rigid inclusions, its domains of applications and methods of calculation under static loading are presented. Then, a synthesis of approaches used to evaluate soil-structure interaction under seismic loading is reviewed; we focus more precisely on methods concerned the grouped piles and rigid inclusions.The second chapter is devoted to the analysis of kinematic interaction of soil_gravel layer-inclusions-structure system. The analysis is performed using a global approach which consists of calculating the response of all elements composing the latter system under seismic loading. The analysis is carried out by a nonlinear three-dimensional numerical modelling of the soil reinforcement system. The chapter is divided into three parts. The first one outlines the used numerical model; the second presents an analysis of a soil reinforces by a group of four rigid inclusions. In the third part, we present a parametric study which covers the influence of main parameters on the seismic response of the rigid inclusions group.The last chapter is devoted to the study of the influence of the presence of structure on the soil-gravel layer-inclusion-structure interaction. The influence of major parameters is highlightened by a parametric study concerns the effect of geometric and mechanical characteristics of the gravel layer, inclusion rigidity, the inclusions-gravel layer connection conditions and the amplitude of the seismic loading. The chapter gives a comparison between the seismic behaviour of rigid inclusion (IR) to both column with mixed module (CMM) and a group of classical piles.
|
3 |
Comportement statique et dynamique de massifs de sol compressible renforcés par inclusions rigides / Static and Dynamic behaviour of pile supported structures in soft soilLopez Jimenez, Guillermo Alfonso 26 June 2019 (has links)
De nombreux tremblements de terre ont provoqué l’effondrement de structures importantes. La conception des structures résistant aux séismes dépend fortement de l’interaction sol-fondation-structure. Cette interaction implique la prise en compte simultanée des mouvements relatifs et des mécanismes de transfert de charge. En ce qui concerne les sols liquéfiables, la génération des pressions interstitielles doit également être prise en compte.Le renforcement des sols compressibles par des pieux est une solution très utilisée pour supporter les structures dans des zones sismiques. Plus récemment, la technique de renforcement par inclusions rigides a été utilisée. La différence entre les deux techniques réside dans le fait que, dans la technique du renforcement par inclusions rigides, un matelas de transfert de charge est intercalé entre la structure et les têtes des inclusions rigides. L’utilisation du matelas permet la dissipation d’énergie liée au séisme.Ce travail de thèse étudie le comportement sismique des sols compressibles renforcés par des pieux (système sol-pieux-structure) et des inclusions rigides (système sol-inclusions-matelas-structure). L’étude est effectuée à l’aide d’une modélisation numérique tridimensionnelle par différences finies avec le code Flac3D. Plusieurs types de sol ont été considérés en prenant en compte des états drainés et non drainés. Pour les cas non drainés, les analyses ont été réalisées à l'aide de simulations hydro-mécaniques couplées. Des modèles constitutifs simples et complexes ont été utilisés pour représenter le comportement du sol. Un amortissement de type Rayleigh a été appliqué pour fournir un amortissement supplémentaire à la partie élastique lorsque des modèles constitutifs élastoplastiques simples ont été considérés.L’objectif de ce travail est d’identifier l’impact des facteurs importants sur la réponse des systèmes analysés. Des nombreux paramètres comme le type de fondation, la fréquence du chargement, les caractéristiques dynamiques de la structure, le profil de sol et la densité relative ont été étudiés. En tenant compte des fondations sur pieux et des inclusions rigides, les conditions aux extrémités des pieux, la configuration du groupe de pieux, la longueur des pieux et l'encastrement des fondations ont également été investigués.Des aspects importants relatifs aux modèles numériques ont également été explorés tels que la géométrie du modèle, les frontières absorbantes, la taille des éléments du maillage, les éléments d'interface, les éléments structurels et le chargement dynamique.Les mouvements et contraintes dans le sol, les structures et les éléments rigides de renforcement ont été analysés et ont permis de mettre en évidence l’influence des divers paramètres étudiés. Cette étude a permis de mettre en évidence l’influence de certains paramètres dans la réponse (accélérations, déplacements, efforts, contraintes, pression interstitielle) des systèmes évalués. Le type de rupture dans les éléments des systèmes étudiés ont également été mis en évidence.Mots-clés: pieux; inclusion rigide; modélisation numérique; analyse dynamique; interaction de la structure du sol; liquéfaction / A great amount of earthquakes have caused the collapse of important structures along the history. The design of earthquake-resistant structures depends greatly of the soil-structure interaction. This interaction implies the consideration of relative movements and load transfer mechanism simultaneously. Dealing with liquefiable soils the generation of pore pressure should also be considered.Pile system constitutes a common foundation of structures resting on soil layers of low stiffness and strength in seismic zones. More recently rigid inclusion systems were utilized. The difference is that in the rigid inclusion systems, the rigid elements are separated from the foundation slab by an earth platform that is able to transfer the surface loads and dissipate energy coming from the seismic loading.This manuscript studies the behavior, through numerical models, of inclusions systems (soil-inclusion-platform-structure) and pile systems (soil-pile-structure) considering soft soils under seismic loadings. Finite difference numerical models were developed using Flac3D. Several types of soils were utilized in drained and undrained conditions. For the undrained cases, the analyses were carrying out using dynamic coupled fluid-mechanical simulations with accuracy the behavior of soils. The Rayleigh damping approach was applied to provide additional damping in the elastic part when simple elasto-plastic constitutive models were considered.The objective of the investigation is the identification of the impact of important factors in the response of the analyzed systems. Factor such as the foundation type, the frequency of the input motion, the dynamic characteristics of the structure, the soil profile and the relative density were investigated. Considering the pile and rigid inclusion foundations, the support conditions, the pile group configuration, the pile length, the embedment of the foundation were also examined.Additional and important aspects of numerical model were also explored like the model geometry, dynamic boundary conditions, element size, interface elements, structural element types, dynamic loading.Results in terms of movements and stresses in the soil, superstructure and rigid elements were obtained. They show the great influence of some parameters in the response (accelerations, displacements, efforts, strains, pore pressure) of the evaluated systems. Others highlight the importance of a type of failure in the elements of the system.Keywords: pile; rigid inclusion; numerical modelling; dynamic analysis; soil structure interaction; liquefaction
|
4 |
Études expérimentale et numérique des transferts de charge dans les matériaux granulaires. Application au renforcement de sols par inclusions rigides.Chevalier, Bastien 05 September 2008 (has links) (PDF)
Le renforcement de sols par inclusions rigides est une technique de fondation dans laquelle un matelas granulaire de transfert de charge est mis en \oe uvre entre l'ouvrage et le sol support. Les reports de charges se développant dans le matelas permettent d'augmenter la charge de l'ouvrage transmise au réseau d'inclusions mis en place dans le sol support. Une importante réduction des tassements peut ainsi être obtenue. L'absence de recommandations relatives au dimensionnement et à la réalisation de de ce type de renforcement de sol a conduit à la mise en place du projet national ASIRi. Une des étapes essentielles à la compréhension du fonctionnement de ce type d'ouvrage réside dans les mécanismes de transfert de charge agissant dans le matelas granulaire qui demeurent mal connus et complexes. Afin d'apporter des éléments de compréhension relatifs à ces mécanismes, une étude expérimentale mettant en jeu des matelas granulaire soumis à une sollicitation simplifiée a été réalisée sur modèle réduit. Dans un second temps, l'étude expérimentale a été complétée par des modélisations numériques utilisant la Méthode des Éléments Discrets. Enfin, une étude paramétrique et numérique portant sur le comportement de matelas de transfert de charge sur inclusions rigides est proposée. Elle se base sur des configurations d'ouvrages usuelles et permet d'évaluer l'influence de différentes solutions techniques sur les reports de charge.
|
5 |
Le renforcement des sols compressibles par inclusions rigides verticales. Modélisation physique et numérique.Jenck, Orianne 29 November 2005 (has links) (PDF)
Le renforcement des sols compressibles par inclusions rigides verticales est une technique qui associe un éseau d'inclusions et un matelas constitué de sol granulaire, intercalé entre le sol renforcé et l'ouvrage. Dans ce matelas se développent des voûtes qui transfèrent partiellement les charges vers les inclusions, permettant ainsi la réduction et l'homogénéisation des tassements en surface du massif renforcé. Le renforcement peut être complété par une nappe géosynthétique en base du matelas, fonctionnant en membrane. Les domaines d'application privilégiés sont les fondations de remblais routiers ou ferroviaires et les fondations de zones industrielles. Les différents éléments de ce système sont en interactions complexes.<br />Ce travail de thèse constitue une contribution à la compréhension du comportement de ce type d'ouvrage, et s'intéresse plus particulièrement à la modélisation des mécanismes se développant dans le matelas de transfert de charge. Il comporte trois parties. La première partie présente le contexte et les objectifs. La deuxième partie est consacrée à la constitution d'une base de données<br />expérimentale précise et complète en terme d'efforts et de déplacements, afin de servir de référence à diverses approches de modélisation numérique. Pour cela, un modèle physique bidimensionnel mettant en oeuvre des matériaux analogiques est développé.<br />La troisième partie concerne la modélisation numérique. La première étape consiste en une modélisation bidimensionnelle en milieu continu, validée à partir des résultats expérimentaux obtenus sur le modèle réduit. Des modèles de comportement spécifiques aux divers matériaux sont mis en oeuvre. L'analyse paramétrique peut alors être étendue numériquement. La seconde étape de la modélisation numérique consiste en la mise en oeuvre de simulations tridimensionnelles en milieu continu de cas réalistes. Les comportements du sol du matelas et du sol compressible sont pris en compte par des modèles de diverses complexités. Le système est d'abord pris en compte par une cellule élémentaire du maillage en conditions drainées, puis par une section courante de remblai présentant des talus latéraux.
|
6 |
Approches expérimentale et numérique du dimensionnement de renforcements géosynthétiques sur cavités et inclusions rigides / Optimisation with numerical and experimental approaches of the mechanical properties of geosynthetic materials used in soil renforcementHuckert, Audrey 26 May 2014 (has links)
Les constructions d'infrastructures linéaires de transport sont de plus en plus contraintes par la traversée de terrains aux caractéristiques mécaniques médiocres, pouvant mener à des tassements importants où à la formation de fontis en base de l'ouvrage. Un renforcement géosynthétique peut alors être mis en œuvre sur cavités potentielles ou en renforcement de plateforme de transfert de charges sur inclusions rigides. L'objectif de cette thèse CIFRE (Conventions Industrielles de Formation par la Recherche) menée dans le cadre du projet de recherche FUI (Fond Unitaire Interministériel) GéoInov est de mieux appréhender le fonctionnement de ces ouvrages renforcés par géosynthétique afin d'en optimiser le dimensionnement. Dans le cadre de la thèse, différentes expérimentations en vraie grandeur ont permis d'appréhender le comportement cinématique et mécanique des renforcements géosynthétiques dans le cas d'effondrements localisés sous un remblai granulaire non cohésif ou une couche de sol traité, et dans le cas des renforcements des plateformes de transfert de charges sur inclusions rigides. Une importante base de données expérimentales a ainsi été constituée. Des simulations numériques discrètes des expérimentations sur cavités et inclusions rigides ont été menés afin de préciser le rôle des renforcements et des mécanismes mis en jeu dans ces structures renforcées. Dans le cas des effondrements localisés, la calibration du modèle à partir des données expérimentales a permis de préciser les mécanismes de transferts de charges au sein du remblai, la géométrie de la distribution de contrainte sur le renforcement géosynthétique et les mécanismes de rupture pour le cas des sols traités. Au final, la combinaison des approches expérimentales et numériques a abouti à une meilleure compréhension de certains mécanismes de transfert de charges ce qui a permis d'apporter des améliorations aux méthodes de dimensionnement analytiques que ce soit pour le cas des remblais granulaires non cohésifs ou pour le cas d'une couche de sol traité renforcé. Des avancées et un enrichissement des codes de calcul ont été également réalisés notamment par l'intégration des grilles de renforcement. / Constructions of transport infrastructures more and more occurs in areas where soils have rather low mechanical characteristics, leading to considerable settlements or the formation of voids. Geosynthetic reinforcements then provide a technical solution over sinkholes or within a load transfer platform over rigid inclusions. This CIFRE (French Research Education by Industrial Convention) PhD is lead as part of the French FUI (Inter-Ministry Fund) research project GeoInov. The purpose is to get better understanding of the mechanical behaviour of geosynthetic-reinforced structures in order to optimise their design. During this thesis, different full-scale experimentations enabled to understand the kinematic and mechanical behaviour of geosynthetic reinforcements over sinkholes under a non-cohesive embankment or a treated soil layer, or geosynthetic-reinforced load transfer platforms over rigid inclusions. Thus a consequent experimental data base was built. The experimentations were then simulated using discrete numerical models in order to specify the role of the geosynthetic reinforcement and mechanical mechanisms within the reinforced structures. For sinkholes, the numerical model could be fitted with experimental data, which enabled to point out load transfer mechanisms within the embankment, the of the load distribution on the geosynthetic reinforcement and failure mechanisms for the case of reinforced treated soil layers. Finally, the combined experimental and numerical approaches lead to a better understanding of some aspects of load transfers within the embankment, which enabled to optimise analytical design methods for geosynthetic reinforcements within a non-cohesive embankment or a treated soil layer overlying a void. Progresses were also made and discrete calculation codes enriched by the integration of geogrids.
|
7 |
Inertial loading of soil reinforced by rigid inclusions associated to a flexible upper layerSantruckova, Hana 18 June 2012 (has links) (PDF)
Le renforcement des sols en zone sismique par des colonnes ballastées et/ou des inclusions rigides représente une alternative prometteuse et de plus en plus répandue par rapport aux solutions lourdes de fondations sur pieux. On sait que les pieux subissent, du fait de leur rigidité, des moments très importants au niveau de la liaison chevêtre-pieu. Les inclusions rigides surmontées d'un matelas granulaire permettent de mieux dissiper les efforts inertiels transmis par la superstructure, mais peuvent nécessiter des armatures si ce matelas n'est pas suffisamment épais. On peut penser que la colonne à module mixte (CMM) offre une solution combinant l'effet " matelas " à travers sa partie supérieure en colonne ballastée plus flexible et l'effet stabilisateur de la colonne inférieure. Cette thèse présente dans une première partie l'étude expérimentale réalisée au Laboratoire 3S-R (Grenoble) sur des modèles réduits à l'échelle 1/10 afin d'analyser la réponse de ces systèmes sous différentes charges statiques et dynamiques. Le modèle physique se compose d'une semelle carrée reposant directement sur l'argile renforcée. Le chargement vertical et horizontal, statique et dynamique est appliqué par l'intermédiaire de la fondation. Une instrumentation a été placée au niveau de la semelle pour obtenir la réponse globale du système, ainsi que dans la partie rigide inférieure du modèle pour évaluer la répartition des efforts entre inclusion et partie flexible supérieure. Une attention toute particulière a été donnée à la simulation de l'effet inertiel d'un séisme. Les profils de moments, d'efforts tranchants et de déplacements en fonction de la profondeur déterminés à partir de 20 extensomètres répartis régulièrement sur toute la hauteur de la partie rigide ont permis d'étudier l'influence de la hauteur de la colonne ou du matelas. La comparaison entre les déplacements dynamiques de la semelle et les courbes P-y (pression latérale P fonction du déplacement latéral y de la tête de pieu), permet de quantifier la dissipation de l'énergie dans les différentes parties du système. Les résultats expérimentaux montrent que la partie supérieure souple absorbe l'essentiel de l'énergie inertielle sismique. Une modélisation numérique 3D confirme les tendances observées expérimentalement et souligne l'importance du rôle de la zone de transition entre partie souple et partie rigide.
|
8 |
Inertial loading of soil reinforced by rigid inclusions associated to a flexible upper layerSmrzova, Hana 18 June 2012 (has links) (PDF)
Le renforcement des sols en zone sismique par des colonnes ballastées et/ou des inclusions rigides représente une alternative prometteuse et de plus en plus répandue par rapport aux solutions lourdes de fondations sur pieux. On sait que les pieux subissent, du fait de leur rigidité, des moments très importants au niveau de la liaison chevêtre-pieu. Les inclusions rigides surmontées d'un matelas granulaire permettent de mieux dissiper les efforts inertiels transmis par la superstructure, mais peuvent nécessiter des armatures si ce matelas n'est pas suffisamment épais. On peut penser que la colonne à module mixte (CMM) offre une solution combinant l'effet " matelas " à travers sa partie supérieure en colonne ballastée plus flexible et l'effet stabilisateur de la colonne inférieure. Cette thèse présente dans une première partie l'étude expérimentale réalisée au Laboratoire 3S-R (Grenoble) sur des modèles réduits à l'échelle 1/10 afin d'analyser la réponse de ces systèmes sous différentes charges statiques et dynamiques. Le modèle physique se compose d'une semelle carrée reposant directement sur l'argile renforcée. Le chargement vertical et horizontal, statique et dynamique est appliqué par l'intermédiaire de la fondation. Une instrumentation a été placée au niveau de la semelle pour obtenir la réponse globale du système, ainsi que dans la partie rigide inférieure du modèle pour évaluer la répartition des efforts entre inclusion et partie flexible supérieure. Une attention toute particulière a été donnée à la simulation de l'effet inertiel d'un séisme. Les profils de moments, d'efforts tranchants et de déplacements en fonction de la profondeur déterminés à partir de 20 extensomètres répartis régulièrement sur toute la hauteur de la partie rigide ont permis d'étudier l'influence de la hauteur de la colonne ou du matelas. La comparaison entre les déplacements dynamiques de la semelle et les courbes P-y (pression latérale P fonction du déplacement latéral y de la tête de pieu), permet de quantifier la dissipation de l'énergie dans les différentes parties du système. Les résultats expérimentaux montrent que la partie supérieure souple absorbe l'essentiel de l'énergie inertielle sismique. Une modélisation numérique 3D confirme les tendances observées expérimentalement et souligne l'importance du rôle de la zone de transition entre partie souple et partie rigide.
|
9 |
Inertial loading of soil reinforced by rigid inclusions associated to a flexible upper layer / Inertial loading of soil reinforced by rigid inclusions associated to a flexible layerSantruckova, Hana 18 June 2012 (has links)
Le renforcement des sols en zone sismique par des colonnes ballastées et/ou des inclusions rigides représente une alternative prometteuse et de plus en plus répandue par rapport aux solutions lourdes de fondations sur pieux. On sait que les pieux subissent, du fait de leur rigidité, des moments très importants au niveau de la liaison chevêtre-pieu. Les inclusions rigides surmontées d'un matelas granulaire permettent de mieux dissiper les efforts inertiels transmis par la superstructure, mais peuvent nécessiter des armatures si ce matelas n'est pas suffisamment épais. On peut penser que la colonne à module mixte (CMM) offre une solution combinant l'effet « matelas » à travers sa partie supérieure en colonne ballastée plus flexible et l'effet stabilisateur de la colonne inférieure. Cette thèse présente dans une première partie l'étude expérimentale réalisée au Laboratoire 3S-R (Grenoble) sur des modèles réduits à l'échelle 1/10 afin d'analyser la réponse de ces systèmes sous différentes charges statiques et dynamiques. Le modèle physique se compose d'une semelle carrée reposant directement sur l'argile renforcée. Le chargement vertical et horizontal, statique et dynamique est appliqué par l'intermédiaire de la fondation. Une instrumentation a été placée au niveau de la semelle pour obtenir la réponse globale du système, ainsi que dans la partie rigide inférieure du modèle pour évaluer la répartition des efforts entre inclusion et partie flexible supérieure. Une attention toute particulière a été donnée à la simulation de l'effet inertiel d'un séisme. Les profils de moments, d'efforts tranchants et de déplacements en fonction de la profondeur déterminés à partir de 20 extensomètres répartis régulièrement sur toute la hauteur de la partie rigide ont permis d'étudier l'influence de la hauteur de la colonne ou du matelas. La comparaison entre les déplacements dynamiques de la semelle et les courbes P-y (pression latérale P fonction du déplacement latéral y de la tête de pieu), permet de quantifier la dissipation de l'énergie dans les différentes parties du système. Les résultats expérimentaux montrent que la partie supérieure souple absorbe l'essentiel de l'énergie inertielle sismique. Une modélisation numérique 3D confirme les tendances observées expérimentalement et souligne l'importance du rôle de la zone de transition entre partie souple et partie rigide. / Along with the increasing need of construction land, numerous soil reinforcement technologies are proposed in order to improve the soil mechanical properties on one hand and overall site response on the other hand. The presented study is carried out in the context of seismic soil reinforcement and its interaction with a shallow footing which undergoes inertial loading. The system is studied mainly through physical modelling when reduced scale models are constructed in order to simulate clay reinforcement, which is composed of a rigid lower part associated to a flexible upper part. The soft upper part offers shear and moment capacity and the rigid lower part gives bearing capacity. In order to design the reinforcement elements, the response of this combined system to different static and dynamic loads must be understood. This thesis presents results from a primarily experimental study performed in Laboratoire 3S-R (Grenoble). Two reduced (1/10) physical models consisting of a group of four rigid inclusions associated to an upper flexible part are studied in clay. Combined vertical and horizontal static and dynamic loading is applied with a shallow foundation model. A parametric study is done, varying the height of the flexible part of the models in order to define its effect on the settlements of the foundation and lateral performance of the rigid inclusion. A special emphasis was given to the study of the inertial effects of seismic type loading. For this purpose, one of the rigid inclusions was instrumented with 20 levels strain gauges measuring flexural strain, used to calculate the bending moment along the pile. This gives pile deflection (y) by double integration and soil reaction (P) by double derivation. P-y curves are thus obtained. The analysis of the dynamic deflection of the rigid inclusion compared to the movement of the foundation allowed an estimation of the energy dissipated. The results indicate that a large amount of the seismic energy is dissipated within the upper flexible part of the models. Even though the scaling laws are not strictly respected, the main objective of the physical modelling was to perform a qualitative study of the soil reinforcement, studying its behaviour under inertial loading and pointing out important mechanisms, which should be taken into account by the current practice.
|
Page generated in 0.1049 seconds