• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Supporting Software Evolution in Agent Systems

Dam, Khanh Hoa, s3007289@student.rmit.edu.au January 2009 (has links)
Software maintenance and evolution is arguably a lengthy and expensive phase in the life cycle of a software system. A critical issue at this phase is change propagation: given a set of primary changes that have been made to software, what additional secondary changes are needed to maintain consistency between software artefacts? Although many approaches have been proposed, automated change propagation is still a significant technical challenge in software maintenance and evolution. Our objective is to provide tool support for assisting designers in propagating changes during the process of maintaining and evolving models. We propose a novel, agent-oriented, approach that works by repairing violations of desired consistency rules in a design model. Such consistency constraints are specified using the Object Constraint Language (OCL) and the Unified Modelling Language (UML) metamodel, which form the key inputs to our change propagation framework. The underlying change propagation mechanism of our framework is based on the well-known Belief-Desire-Intention (BDI) agent architecture. Our approach represents change options for repairing inconsistencies using event-triggered plans, as is done in BDI agent platforms. This naturally reflects the cascading nature of change propagation, where each change (primary or secondary) can require further changes to be made. We also propose a new method for generating repair plans from OCL consistency constraints. Furthermore, a given inconsistency will typically have a number of repair plans that could be used to restore consistency, and we propose a mechanism for semi-automatically selecting between alternative repair plans. This mechanism, which is based on a notion of cost, takes into account cascades (where fixing the violation of a constraint breaks another constraint), and synergies between constraints (where fixing the violation of a constraint also fixes another violated constraint). Finally, we report on an evaluation of the approach, covering both effectiveness and efficiency.
2

A Bayesian learning approach to inconsistency identification in model-based systems engineering

Herzig, Sebastian J. I. 08 June 2015 (has links)
Designing and developing complex engineering systems is a collaborative effort. In Model-Based Systems Engineering (MBSE), this collaboration is supported through the use of formal, computer-interpretable models, allowing stakeholders to address concerns using well-defined modeling languages. However, because concerns cannot be separated completely, implicit relationships and dependencies among the various models describing a system are unavoidable. Given that models are typically co-evolved and only weakly integrated, inconsistencies in the agglomeration of the information and knowledge encoded in the various models are frequently observed. The challenge is to identify such inconsistencies in an automated fashion. In this research, a probabilistic (Bayesian) approach to abductive reasoning about the existence of specific types of inconsistencies and, in the process, semantic overlaps (relationships and dependencies) in sets of heterogeneous models is presented. A prior belief about the manifestation of a particular type of inconsistency is updated with evidence, which is collected by extracting specific features from the models by means of pattern matching. Inference results are then utilized to improve future predictions by means of automated learning. The effectiveness and efficiency of the approach is evaluated through a theoretical complexity analysis of the underlying algorithms, and through application to a case study. Insights gained from the experiments conducted, as well as the results from a comparison to the state-of-the-art have demonstrated that the proposed method is a significant improvement over the status quo of inconsistency identification in MBSE.

Page generated in 0.1363 seconds