• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 132
  • 132
  • 132
  • 35
  • 29
  • 25
  • 24
  • 20
  • 17
  • 16
  • 16
  • 14
  • 13
  • 13
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Assessment of indoor air quality in Texas elementary schools

Sanders, Mark Daniel, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
32

Inhalation exposure pathways for polybrominated diphenyl ethers a source to human receptor model for semivolatile organic compounds /

Waye, Scot Kenyon, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
33

Responses of indoor moulds to water dynamics : the transient water conditions rendered by non-24 h air-conditioning

Wu, Haoxiang 13 August 2020 (has links)
Due to rapid urbanisation, people in metropolises spend the majority of their time indoors. Indoor mould contamination, as one of the most pungent biohazards in built environments, can ubiquitously present in humid areas and potentially compromise the health of occupants. Governmental institutions like the World Health Organisation and United States Environmental Protection Agency have put forward guidelines for indoor mould prevention. However, these guidelines normally require occupants to maintain a low indoor humidity (<75% or even 40%), and thus, in tropical and subtropical areas, one of the most widely used approaches to prevent indoor mould contamination is to continuously operate air-conditioners or dehumidifiers (AC/D). The 24 h operation of AC/D, however, conflicts with the requirement of energy sustainability, and hence posits a trade-off between sustainability and indoor mould hygiene. The aim of this study was to facilitate the development of sustainable and effective mould prevention strategies for indoor environments. The literature on currently adopted mould prevention strategies including that target moisture (24 h AC/D), temperature (air-conditioning system and cool wall paint) and nutrient (dust removal) elements as well as new nanoparticles technology (Ag, TiO 2 and MgO nanoparticles), was reviewed and the main limitations of these strategies were discussed. It was found that none of these current mould prevention measures has addressed both sustainability and mould hygiene on balance, urging further investigations. Therefore, the objective of the first phase investigation was to develop sustainable cause-specific mould control measures in built environments. A case study of a mould contaminated site was conducted to illustrate the micro-environments that contribute to mould contamination in buildings. The currently used 24-h AC/D approach was compared with and ranked against other sustainable alternatives. The results of this case study suggest that determining an effective non-24 h AC/D management regime tends to be a sustainable and user-friendly solution. To develop such a regime, understanding the critical mechanisms regulating indoor mould responses to water dynamics is essential. Thus, the objective of the second phase was to characterise the critical mechanism regulating the growth of common indoor moulds under water dynamics. It was hypothesised that oxidative stress is associated with the growth of indoor moulds under water dynamics. Using Cladosporium cladosporioides as a model, both its pre-germination and germinated spores were exposed to daily wet-dry cycles. Afterwards, the growth was assessed and cellular H 2 O 2 concentration and catalase activity were measured. It was found that under water dynamics, the longer growth delay in C. cladosporioides was associated with a higher encountered oxidative stress, with 12-12 wet-dry cycle (12 h wet, 12 h dry) showing the longest delay and highest oxidative stress. Pearson correlation and linear regression analysis suggest a positive correlation between growth delay and oxidative stress under water dynamics (R 2 =0.85, P<0.0001). Moreover, pre- germination spores generally exhibited shorter growth delay, lower cellular H 2 O 2 concentration and higher catalase activity. Collectively, these results suggest that the growth of C. cladosporioides is associated with oxidative stress under water dynamics. After revealing the association between the growth of C. cladosporioides and oxidative stress under water dynamics, at the third phase, this finding was extrapolated to different mould species (C. cladosporioides, Aspergillus niger and Aspergillus penicillioides), water activity (a w ) (0.4 a w , 0.6 a w and 0.8 a w ) and temperature levels (19 °C and 28 °C). In addition, the antioxidant responses of treated moulds, including antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase) were monitored. The results showed that lower water activity levels imposed higher oxidative stress to moulds, and A. penicillioides exhibited the highest tolerance which displayed the highest antioxidant activities and encountered lowest oxidative damage under water dynamics. Moreover, no significant difference was measured in terms of the survival, oxidative stress and antioxidant responses between these two temperature levels. The third phase of the study, for the first time discovered the reason contributing to the different resistance towards water dynamics among common indoor moulds, and further confirmed the important role of oxidative stress adaptation in withstanding transient water supply. In conclusion, this study reveals the critical role of oxidative stress adaptation in helping moulds to cope with changing water conditions, which may shed light on a new perspective for the future development of indoor mould prevention strategies. It also indicates that longer operation time of AC/D each day may not necessarily lead to better prevention of mould contamination, suggesting that in order to sustainably prevent mould contamination, one should operate reasonable non-24 h AC/D each day (12 h/day according to the examined species in this study) to yield a more stressful wet-dry cycle to moulds. The outcomes of this study foster the development of novel and sustainable indoor mould prevention strategies
34

Responses of indoor moulds to water dynamics : the transient water conditions rendered by non-24 h air-conditioning

Wu, Haoxiang 13 August 2020 (has links)
Due to rapid urbanisation, people in metropolises spend the majority of their time indoors. Indoor mould contamination, as one of the most pungent biohazards in built environments, can ubiquitously present in humid areas and potentially compromise the health of occupants. Governmental institutions like the World Health Organisation and United States Environmental Protection Agency have put forward guidelines for indoor mould prevention. However, these guidelines normally require occupants to maintain a low indoor humidity (<75% or even 40%), and thus, in tropical and subtropical areas, one of the most widely used approaches to prevent indoor mould contamination is to continuously operate air-conditioners or dehumidifiers (AC/D). The 24 h operation of AC/D, however, conflicts with the requirement of energy sustainability, and hence posits a trade-off between sustainability and indoor mould hygiene. The aim of this study was to facilitate the development of sustainable and effective mould prevention strategies for indoor environments. The literature on currently adopted mould prevention strategies including that target moisture (24 h AC/D), temperature (air-conditioning system and cool wall paint) and nutrient (dust removal) elements as well as new nanoparticles technology (Ag, TiO 2 and MgO nanoparticles), was reviewed and the main limitations of these strategies were discussed. It was found that none of these current mould prevention measures has addressed both sustainability and mould hygiene on balance, urging further investigations. Therefore, the objective of the first phase investigation was to develop sustainable cause-specific mould control measures in built environments. A case study of a mould contaminated site was conducted to illustrate the micro-environments that contribute to mould contamination in buildings. The currently used 24-h AC/D approach was compared with and ranked against other sustainable alternatives. The results of this case study suggest that determining an effective non-24 h AC/D management regime tends to be a sustainable and user-friendly solution. To develop such a regime, understanding the critical mechanisms regulating indoor mould responses to water dynamics is essential. Thus, the objective of the second phase was to characterise the critical mechanism regulating the growth of common indoor moulds under water dynamics. It was hypothesised that oxidative stress is associated with the growth of indoor moulds under water dynamics. Using Cladosporium cladosporioides as a model, both its pre-germination and germinated spores were exposed to daily wet-dry cycles. Afterwards, the growth was assessed and cellular H 2 O 2 concentration and catalase activity were measured. It was found that under water dynamics, the longer growth delay in C. cladosporioides was associated with a higher encountered oxidative stress, with 12-12 wet-dry cycle (12 h wet, 12 h dry) showing the longest delay and highest oxidative stress. Pearson correlation and linear regression analysis suggest a positive correlation between growth delay and oxidative stress under water dynamics (R 2 =0.85, P<0.0001). Moreover, pre- germination spores generally exhibited shorter growth delay, lower cellular H 2 O 2 concentration and higher catalase activity. Collectively, these results suggest that the growth of C. cladosporioides is associated with oxidative stress under water dynamics. After revealing the association between the growth of C. cladosporioides and oxidative stress under water dynamics, at the third phase, this finding was extrapolated to different mould species (C. cladosporioides, Aspergillus niger and Aspergillus penicillioides), water activity (a w ) (0.4 a w , 0.6 a w and 0.8 a w ) and temperature levels (19 °C and 28 °C). In addition, the antioxidant responses of treated moulds, including antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase) were monitored. The results showed that lower water activity levels imposed higher oxidative stress to moulds, and A. penicillioides exhibited the highest tolerance which displayed the highest antioxidant activities and encountered lowest oxidative damage under water dynamics. Moreover, no significant difference was measured in terms of the survival, oxidative stress and antioxidant responses between these two temperature levels. The third phase of the study, for the first time discovered the reason contributing to the different resistance towards water dynamics among common indoor moulds, and further confirmed the important role of oxidative stress adaptation in withstanding transient water supply. In conclusion, this study reveals the critical role of oxidative stress adaptation in helping moulds to cope with changing water conditions, which may shed light on a new perspective for the future development of indoor mould prevention strategies. It also indicates that longer operation time of AC/D each day may not necessarily lead to better prevention of mould contamination, suggesting that in order to sustainably prevent mould contamination, one should operate reasonable non-24 h AC/D each day (12 h/day according to the examined species in this study) to yield a more stressful wet-dry cycle to moulds. The outcomes of this study foster the development of novel and sustainable indoor mould prevention strategies
35

Household Air Pollution in Ghana: Stove Use, Health Impacts, and Policy Options

Carrión, Daniel January 2019 (has links)
Background: Three billion individuals worldwide rely on biomass fuel (crops, dung, wood) for cooking and heating, mostly in the developing world. Incomplete combustion of these biomass fuels in inefficient cookstoves leads to high levels of household air pollution (HAP). Health conditions resulting from HAP are responsible for approximately 1.6 million premature deaths each year. Of the diseases associated with HAP exposure, lower respiratory infections (LRIs) are the leading cause of death for children under five worldwide. There is a great need to understand the etiology of HAP-associated LRIs to inform health interventions and to improve treatments. Ultimately, however, the only way to prevent the disease burden from HAP is to stop exposure. Policies and programs to promote the use of clean fuels for cooking are a pivotal prevention strategy. Methods: All three studies draw from an established cohort in Ghana. The Ghana Randomized Air Pollution and Health Study (GRAPHS), was a cookstove intervention trial in Kintampo, Ghana. Participants were randomized to a more efficient biomass cookstove arm, a liquefied petroleum gas (LPG) stove arm, or the traditional cookstove arm (baseline). The principal outcome of GRAPHS was childhood pneumonia. The first chapter utilizes banked nasal swabs from GRAPHS to assess the relationship between HAP exposures and a panel of known respiratory pathogens. In the second chapter we leverage data on stove use during GRAPHS, and then follow a sub cohort 6 months prior to and 6 months after the GRAPHS termination date. We employ a novel construct, suspended use, to understand the factors associated with people stopping LPG use. The third chapter tests a new randomized intervention on a subset of the GRAPHS participants. We provide free cookstoves, and allocate participants to one of four arms: a behavior change intervention, an intervention where LPG fuel is directly delivered to their home, a dual intervention of behavior change and fuel delivery, or a control arm. We track their stove use to identify the most effective intervention on sustained use. Results: In Chapter 1, we find that the traditional cookstove users had a higher mean number of microbial species than the LPG (LPG: 2.71, 3-stone: 3.34, p<0.0001, n = 260). This difference was driven by increased bacterial (p<0.0001) rather than viral species presence (non-significant). Adjusted exposure-response analyses, however, produced null results. Chapter 2 identifies several factors associated with reduced or suspended LPG use of intervention cookstoves, including: experience of burns, types of food made, and access to biomass fuels. Finally, in Chapter 3 results show increased use for all three intervention arms, the largest for the direct delivery arm with an increased weekly use of 4.7 minutes per week (p<0.001). Conclusions: Transition away from traditional biomass stoves is projected to curb the health effects of HAP by mitigating exposure, but the full benefits of newer clean cookstove technologies can only be realized if use of these new stoves is absolute and sustained. This work enhances our understanding of the etiology of HAP-associated pneumonia, the drivers of clean cookstove suspension, and informs policies designed to promote clean cookstove sustained use, thus reducing the burden of disease associated with exposure. We recommend future use of the suspended use paradigm in research to inform future household energy interventions. Additionally, we encourage policymakers to incorporate health behavior change theory and approaches in cookstove intervention and promotion efforts.
36

Indoor air quality and heating, ventilation & air conditioning systems in office buildings /

Leung, Wai-yip. January 1997 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1997. / Includes bibliographical references.
37

Environmental policies and complaints of air pollution inside the public transport interchanges in Hong Kong /

Lo, Chi-wah, Anthony. January 1997 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1997. / Cover title. Includes bibliographical references (leaf 138-139).
38

Trace organic pollution in the indoor environment /

Poon, Tim-leung. January 1993 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1993.
39

Impact of indoor air pathogens on human health /

Chu, Suk-ling. January 1996 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1996. / Includes bibliographical references (leaf [44-52]).
40

Radiation dose due to indoor radon and its progeny in Hong Kong and a study of mitigation methods to control indoor radon exposure /

Ho, Chi-wai, January 1998 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 191-200).

Page generated in 0.107 seconds