1 |
Bounding the Number of Graphs Containing Very Long Induced PathsButler, Steven Kay 07 February 2003 (has links) (PDF)
Induced graphs are used to describe the structure of a graph, one such type of induced graph that has been studied are long paths. In this thesis we show a way to represent such graphs in terms of an array with two colors and a labeled graph. Using this representation and the techniques of Polya counting we will then be able to get upper and lower bounds for graphs containing a long path as an induced subgraph. In particular, if we let P(n,k) be the number of graphs on n+k vertices which contains P_n, a path on n vertices, as an induced subgraph then using our upper and lower bounds for P(n,k) we will show that for any fixed value of k that P(n,k)~2^(nk+k_C_2)/(2k!).
|
Page generated in 0.061 seconds