• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Economic and Environmental Analysis of Excess Heat at Pulp Mills

Kullmann, Felix January 2018 (has links)
European industries have realized that a reduction of primary energy usage is not only a European requirement but can also be of great economic interest. Especially both energy and resource intensive industries like the pulp and paper industry will benefit. Industrial excess heat as a by-product of industrial processes needing energy has a great potential to be a key factor in reducing primary energy usage. Both excess heat utilization and heat integration are potential ways for Kraft pulp mills to increase their energy efficiency, to decrease their primary energy use and thus green-house gas emission, and to support the pulp and paper industry to achieve sustainability goals and meet EU regulations. This thesis examines the total excess heat potential in the Swedish Kraft pulp industry through pinch analysis and optimization on a modelled average Swedish Kraft pulp mill (FRAM). Different excess heat recovery technologies (EHRTs) are identified based on their applicability and are evaluated regarding their environmental and economic benefits for the Swedish pulp industry by using the energy price and carbon scenarios tool (ENPAC tool). An excess heat potential in the Swedish Kraft pulp mill industry of 2,03 TWh at 60°C, and 3,53 TWh at 25°C is found in this study. Heat delivery to the district heating network (DH), cooling delivery to the district cooling network (DC), electricity generation with a condensing turbine (CT), phase-change material engine (PCM) and organic Rankine cycle (ORC) are identified as suitable excess heat recovery technologies for Swedish Kraft pulp mills. A payback time calculation in this study found the condensing turbine as the EHRT to be of highest economic benefit in 2018 (less than 3 years). With predicted future energy prices of the years 2030, 2040 and 2050 all considered recovery technologies become economically feasible (payback time of less than 3 years). The CT and combinations of CT with DH and DC are furthermore the recovery technologies with the highest CO2 savings of 100.000 t/a in 2018. All in all, this study suggests investing in a CT, or combinations of it with DH and DC, to create the greatest economic and environmental benefits in 2018. With future price changes on the energy market and an uncertain future energy demand an investment in combinations of recovery technologies generating both heat, cooling and electricity is found to be the most sustainable choice.
2

Evaluating the utilisation of industrial excess heat from an energy systems perspective

Cruz, Igor January 2022 (has links)
Sweden aims to achieve climate neutrality by 2045. The need to immediately reduce greenhouse gas emissions in order to achieve climate targets affects industry directly. The pulp and paper sector is responsible for more than 50% of industrial energy use in Sweden. Increased energy efficiency is expected to contribute significantly to the reduction of primary energy use. The recovery and utilisation of industrial excess heat (IEH) has been identified as an important potential contribution to energy efficiency in industry. Previous research based on top-down studies has estimated the availability of IEH for entire sectors, and bottom-up results for many case studies are available. While top-down studies lack detailed information on the profile of the excess heat available, bottom-up studies have limited coverage. Detailed information about excess heat amounts and temperature levels is required for the assessment of the potential of the various heat recovery technologies that are available.  The aim of this thesis is to present, in a series of steps, methods to systematically analyse an industrial process to obtain a detailed profile of the excess heat available under various process conditions, to aggregate results that can be generalised to whole industrial sectors, and to obtain IEH recovery potentials using different technologies. The assessment of the utilisation options for IEH recovery is complemented with an analysis of system aspects that could affect profitability and global greenhouse gas (GHG) emissions. An energy-targeting procedure combined with optimisation has been applied to six case studies of kraft pulp and paper mills in Sweden. This method obtained IEH profiles that were used in a regression analysis to estimate the IEH availability and electricity generation potentials from low and medium temperature IEH using organic Rankine cycles (ORC). A comparison of profitability and global GHG emissions between ORC electricity generation using IEH and small-scale combined heat and electricity (CHP) production is presented for three energy markets. The results show that there is a potential to increase electricity generation from low and medium temperature IEH by 7–9% in the kraft mills in Sweden, depending on the level of process integration considered. The utilisation of low and medium temperature IEH for electricity generation has the potential to reduce global GHG emissions in all the energy-market scenarios considered, but if biomass is considered a limited resource, district heating (DH) deliveries can achieve higher global GHG reductions. ORC electricity generation from low and medium temperature IEH is economically viable and showed overall better profitability and GHG emissions reductions than small-scale CHP using ORCs. The economic feasibility of ORC electricity generation is less affected by external conditions and uncertainties than direct DH deliveries. / Sverige siktar på att uppnå klimatneutralitet till 2045. Behovet av att omedelbart minska utsläppen av växthusgaser för att nå klimatmålen påverkar industrin direkt. Massa- och papperssektorn står för mer än 50% av den industriella energianvändningen i Sverige. Ökad energieffektivitet förväntas i hög grad bidra till att minska primärenergianvändningen. Återvinning och utnyttjande av industriell överskottsvärme (IÖV) har identifierats som ett betydande potentiellt bidrag till energieffektivitet i industrin. Tidigare forskning baserad på top-down studier har uppskattat tillgängligheten av IÖV för hela sektorer eller regioner, och bottom-up resultat för många fallstudier finns tillgängliga. Medan top-down studier saknar detaljerad information om profilen för tillgänglig överskottsvärme, har bottom-up studier begränsad täckning och precision. Detaljerad information om överskottsvärmemängder och temperaturnivåer krävs för att bedöma potentialen hos flera värmeåtervinningstekniker. Denna avhandling syftar till att i en serie steg presentera metoder för att systematiskt analysera en industriell process för att erhålla en detaljerad profil av tillgänglig överskottsvärme under olika processförhållanden, för att aggregera resultat som kan generaliseras för hela industrisektorer, och att erhålla återvinningspotentialer för industriell överskottsvärme med hjälp av olika teknologier. Bedömningen av olika möjligheter att använda industriell överskottsvärme kompletteras med en analys av systemaspekter som kan påverka lönsamhet och globala växthusgasutsläpp. Ett energimålsförfarande kombinerat med optimering har tillämpats på sex fallstudier av massa- och pappersbruk i Sverige, med produktion baserat på sulfatmassa. Med denna metod erhålls IÖV-profiler som används i en regressionsanalys för att uppskatta tillgängligheten av IÖV och potentialen för elproduktion från låg- och medeltempererad IÖV med organiska Rankine-cykler (ORC). En jämförelse av lönsamhet och globala växthusgasutsläpp mellan elproduktion med ORC, där IÖV utgör grunden, och småskalig kombinerad värme och el (KVV) produktion presenteras för tre energimarknader. Resultaten visar en potential att öka elproduktionen från låg- och medeltempererad IÖV med 7% till 9% i sulfatmassabruken i Sverige, beroende på graden av processintegration som beaktas. Användningen av låg- och medeltempererad IÖV för elproduktion kan potentiellt minska de globala växthusgasutsläppen i alla övervägda energimarknadsscenarier. Om biomassa betraktas som en begränsad resurs, kan emellertid direkta fjärrvärmeleveranser uppnå högre globala minskningar av växthusgaser. ORC-elproduktion från låg- och medeltempererad IÖV är ekonomiskt lönsam och visade överlag bättre lönsamhet och minskade växthusgasutsläpp än småskalig ORC-kraftvärme. Den ekonomiska genomförbarheten av ORC-elproduktion påverkas mindre av yttre förhållanden och osäkerheter än fjärrvärmeleveranser.

Page generated in 0.0842 seconds