• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 14
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The molecular structure of selected South African coal-chars to elucidate fundamental principles of coal gasification / Mokone Joseph Roberts

Roberts, Mokone Joseph January 2015 (has links)
Advances in the knowledge of chemical structure of coal and development of high performance computational techniques led to more than hundred and thirty four proposed molecular level representations (models) of coal between 1942 and 2010. These models were virtually on the carboniferous coals from the northern hemisphere. There are only two molecular models based on the inertinite- and vitrinite-rich coals from the southern hemisphere. The current investigation is based on the chars derived from the Permian-aged coals in two major South African coalfields, Witbank #4 seam and Waterberg Upper Ecca. The two coals were upgraded to 85 and 93% inertinite- and vitrinite-rich concentrates, on visible mineral matter free basis. The coals were slow heated in inert atmosphere at 20 ℃ min-1 to 450, 700 and 1000 ℃ and held at that temperature for an hour. After the HCl-HF treatment technique at ambient temperatures, the characteristics of the coals and chars were examined with proximate, ultimate, helium density, porosity, surface area, petrographic, solid-state 13C NMR, XRD and HRTEM analytical techniques. The results largely showed that substantial transitions occurred at 700-1000 ℃, where the chars became physically different but chemically similar. Consequently, the chars at the highest temperature (1000 ℃) drew attention to the detailed study of the atomistic properties that may give rise to different reactivity behaviours with CO2 gas. The H/C atomic ratios for the inertinite- and vitrinite-rich chars were respectively 0.31 and 0.49 at 450 ℃ and 0.10 and 0.12 at 1000 ℃. The true density was respectively 1.48 and 1.38 g.cm-3 at 450 ℃ and 1.87 and 1.81 g.cm-3 at 1000 ℃. The char form results from the petrographic analysis technique indicated that the 700-1000 ℃ inertinite-rich chars have lower proportions of thick-walled isotropic coke derived from pure vitrinites (5-8%) compared with the vitrinite-rich chars (91-95%). This property leads to the creation of pores and increases of volume and surface area as the softening walls expand. It was found that the average crystallite diameter, La, and the mean length of the aromatic carbon fringes from the XRD and HRTEM techniques, respectively, were in good agreement and made a definite distinction between the 1000 ℃ inertinite- and vitrinite-rich chars. The crystallite diameter on peak (10) approximations, La(10), of 37.6Å for the 1000 ℃ inertinite-rich chars fell within the HRTEM’s range of minimummaximum length boundary of 11x11 aromatic fringes (27-45Å). The La (10) of 30.7Å for the vitrinite-rich chars fell nearly on the minimum-maximum length range of 7x7 aromatic fringes (17-28Å.) The HRTEM results showed that the 1000 ℃ inertinite-rich chars comprised a higher distribution of larger aromatic fringes (11x11 parallelogram catenations) compared with a higher distribution of smaller aromatic fringes (7x7 parallelogram catenations). The mechanism for the similarity between the 700-1000 ℃ inertinite- and vitrinite-rich chars was the greater transition occurring in the vitrinite-rich coal to match the more resistant inertinite-rich coal. This emphasised that the transitions in the properties of vitrinite-rich coals were more thermally accelerated than those of the inertinite-rich coals. The similarity between the inertinite- and vitrinite-rich chars was shown by the total maceral reflectance, proximate, ultimate, skeletal density and aromaticity results. Evidence for this was the carbon content by mass for the inertinite- and vitrinite-rich chars of respectively 90.5 and 85.3% at 450 ℃ and 95.9 and 94.1% at 1000 ℃. The aromaticity from the XRD technique was respectively 87 and 77% at 450 ℃ and 98 and 96% at 1000 ℃. A similar pattern was found in the hydrogen and oxygen contents, the atomic O/C ratios and the aromaticity from the NMR technique. The subsequent construction of large-scale molecular structures for the 1000 ℃ inertinite-rich chars comprised 106 molecules constructed from a total of 42929 atoms, while the vitrinite-rich char model was made up of 185 molecules consisting of a total of 44315 atoms. The difference between the number of molecules was due to the inertinite-rich char model comprising a higher distribution of larger molecules compared with the vitrinite-rich char model, in agreement with the XRD and HRTEM results. These char structures were used to examine the behaviour on the basis of gasification reactivity with CO2. The density functional theory (DFT) was used to evaluate the interactions between CO2 and the atomistic representations of coal char derived from the inertinite- and vitrinite rich South African coals. The construction of char models used the modal aromatic fringes (fringes of highest frequencies in size distributions) from the HRTEM, for the inertinite- and vitrinite-rich chars, respectively (11x11 and 7x7 parallelogram-shaped aromatic carbon rings). The structures were DFT geometrically optimized and used to measure reactivity with the Fukui function, f+(r) and to depict a representative reactive carbon edge for the simulations of coal gasification reaction mechanism with CO2 gas. The f+(r) reactivity indices of the reactive edge follows the sequence: zigzag C remote from the tip C (Czi = 0.266) > first armchair C (Cr1 = 0.087) > tip C (Ct = 0.075) > second armchair C (Cr2 = 0.029) > zigzag C proximate to the tip C (Cz = 0.027). The DFT simulated mean activation energy, ΔEb, for the gasification reaction mechanism (formation of second CO gas molecule) was 233 kJ mol-1. The reaction for the formation of second CO molecule is defines gasification in essence. The experimental activation energy determined with the TGA and random pore model to account essentially for the pore variation in addition to the gasification chemical reaction were found to be very similar: 191 ± 25 kJ mol-1 and 210 ± 8 kJ mol-1; and in good agreement with the atomistic results. The investigation gave promise towards the utility of molecular representations of coal char within the context of fundamental coal gasification reaction mechanism with CO2. / PhD (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
12

The effects of chemical and physical properties of chars derived from inertinite–rich, high ash coals on gasification reaction kinetics / Gregory Nworah Okolo

Okolo, Gregori Nworah January 2010 (has links)
With the increasing global energy demand and the decreasing availability of good quality coals, a better understanding of the important properties that control the behaviour of low–grade coals and the subsequent chars in various utilisation processes, becomes pertinent. An investigation was therefore undertaken, to study the effects of chemical and physical properties imparted on chars during pyrolysis on the subsequent gasification reaction kinetics of typical South African inertinite–rich, high ash Highveld coals. An attempt was made at following these changes in the transition from coals to chars by a detailed characterisation of both the parent coals and the respective chars. These changes were determined using various conventional and advanced techniques, which included among others, carbon crystallite analysis using XRD and char carbon forms analysis using petrography. Three of the four original coals were characterised as Bituminous Medium rank C (coals B, C and C2), while coal D2 was found to be slightly lower in rank (Bituminous Medium rank D). The coals were rich in inertinites (> 54 vol. %, mmb with coal C2 having as high as 79 vol. %, mmb) and high in ash content (> 26.7 wt. %, db) and cabominerite and minerite contents (26 – 39 vol. %, mmb). The inertinitevitrinite ratios of the coals were found to range from 1.93 to 26.3. Characterization results show that both volatile matter and inherent moisture content decreased, while ash, fixed carbon and elemental carbon contents increased from coals to chars, indicating that the pyrolysis process was efficient. Elemental hydrogen, oxygen and nitrogen contents decreased, whereas total sulphur contents increased from coals to chars. This reveals that the total sulphur contained in the char samples was associated with the char carbon matrix and the minerals. Hydrogen–carbon and oxygen–carbon ratios decreased considerably from coals to chars showing that the chars are more aromatic and denser products than the original coals. Despite the fact that mineral matter increased from coals to chars, the relative abundance of the different mineral phases and ash components did not exhibit significant variation amongst the samples. The alkali index was, however, found to vary considerably among the subsequent chars. Petrographic analysis of the coals and char carbon forms analysis of the chars reveal that total reactive components (TRC) decrease while the total inert components (TIC) increase from coals to chars. The 0% gain in TIC observed in char C2 was attributed to its relatively high partially reacted maceral char carbon forms content. Total maceral reflectance shifted to higher values in the chars (4.43 – 5.28 Rsc%) relative to the coals (1.15 – 1.63 Rsc%) suggesting a higher structural ordering in the chars. Carbon crystallite analyses revealed that the chars were condensed (smaller in size) relative to the parent coals. Lattice parameters: interlayer spacing, d002, increased, while the average crystallite height, Lc, crystallite diameter, La, and number of aromatic layers per crystallite, Nave, decreased from coals to chars. Carbon aromaticity generally increased whereas the fraction of amorphous carbon and the degree of disorder index decreased from parent coals to the respective chars. Both micropore surface area and microporosity were observed to increase while the average micropore diameter decreased from coals to chars. This shows that blind and closed micropores were “opened up” during the charring process. Despite the original coal samples not showing much variation in their properties (except for their maceral content), it was generally observed that the subsequent chars exhibited substantial differences, both amongst themselves and from the parent coals. The increasing orders of magnitude of micropore surface area, microporosity, fraction of amorphous carbon and structural disorderliness were found to change in the transition, a good indication that the chars’ properties varied from that of the respective parent coals. Isothermal CO2 gasification experiments were conducted on the chars in a Thermax 500 thermogravimetric analyser in the temperature range of 900 – 950 °C with varying concentrations of CO2 (25 – 100 mol. %) in the CO2–N2 reaction gas mixture at ambient pressure (0.875 bar in Potchefstroom). The effects of temperature and CO2 concentration were observed to be in conformity with established trends. The initial reactivity of the chars was found to increase in the order: chars C2 < C < B < D2, with char D2 reactivity greater than the reactivity of the other chars by a factor > 4. Gasification reactivity results were correlated with properties of the parent coals and chars. Except for the rank parameter (the vitrinite reflectance), no significant trend was observed with any other coal petrographic property. Correlations with char properties gave more significant and systematic trends. Major factors affecting the gasification reactivity of the chars as it pertains to this investigation are: parent coal vitrinite reflectance, and: aromaticity, fraction of amorphous carbon, degree of disorder and alkali indices, micropore surface area, microporosity and average micropore diameter of the chars. The random pore model (chemical reaction controlling) was found to adequately describe the gasification reaction experimental data (both conversions and conversion rates). The determined activation energy ranged from 163.3 kJ·mol–1 for char D2 to 235.7 kJ·mol–1 for char B; while the order of reaction with respect to CO2 concentration ranged between 0.52 to 0.67 for the four chars. The lower activation energy of char D2 was possibly due to its lower rank, lower coal vitrinite reflectance and higher alkali index. The estimated kinetic parameters of the chars in this study correspond very well with published results in open literature. It was possible to express the intrinsic reactivity, rs, of the chars (rate of carbon conversion per unit total surface area) using kinetic results, in empirical Arrhenius forms. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2011.
13

The effects of chemical and physical properties of chars derived from inertinite–rich, high ash coals on gasification reaction kinetics / Gregory Nworah Okolo

Okolo, Gregori Nworah January 2010 (has links)
With the increasing global energy demand and the decreasing availability of good quality coals, a better understanding of the important properties that control the behaviour of low–grade coals and the subsequent chars in various utilisation processes, becomes pertinent. An investigation was therefore undertaken, to study the effects of chemical and physical properties imparted on chars during pyrolysis on the subsequent gasification reaction kinetics of typical South African inertinite–rich, high ash Highveld coals. An attempt was made at following these changes in the transition from coals to chars by a detailed characterisation of both the parent coals and the respective chars. These changes were determined using various conventional and advanced techniques, which included among others, carbon crystallite analysis using XRD and char carbon forms analysis using petrography. Three of the four original coals were characterised as Bituminous Medium rank C (coals B, C and C2), while coal D2 was found to be slightly lower in rank (Bituminous Medium rank D). The coals were rich in inertinites (> 54 vol. %, mmb with coal C2 having as high as 79 vol. %, mmb) and high in ash content (> 26.7 wt. %, db) and cabominerite and minerite contents (26 – 39 vol. %, mmb). The inertinitevitrinite ratios of the coals were found to range from 1.93 to 26.3. Characterization results show that both volatile matter and inherent moisture content decreased, while ash, fixed carbon and elemental carbon contents increased from coals to chars, indicating that the pyrolysis process was efficient. Elemental hydrogen, oxygen and nitrogen contents decreased, whereas total sulphur contents increased from coals to chars. This reveals that the total sulphur contained in the char samples was associated with the char carbon matrix and the minerals. Hydrogen–carbon and oxygen–carbon ratios decreased considerably from coals to chars showing that the chars are more aromatic and denser products than the original coals. Despite the fact that mineral matter increased from coals to chars, the relative abundance of the different mineral phases and ash components did not exhibit significant variation amongst the samples. The alkali index was, however, found to vary considerably among the subsequent chars. Petrographic analysis of the coals and char carbon forms analysis of the chars reveal that total reactive components (TRC) decrease while the total inert components (TIC) increase from coals to chars. The 0% gain in TIC observed in char C2 was attributed to its relatively high partially reacted maceral char carbon forms content. Total maceral reflectance shifted to higher values in the chars (4.43 – 5.28 Rsc%) relative to the coals (1.15 – 1.63 Rsc%) suggesting a higher structural ordering in the chars. Carbon crystallite analyses revealed that the chars were condensed (smaller in size) relative to the parent coals. Lattice parameters: interlayer spacing, d002, increased, while the average crystallite height, Lc, crystallite diameter, La, and number of aromatic layers per crystallite, Nave, decreased from coals to chars. Carbon aromaticity generally increased whereas the fraction of amorphous carbon and the degree of disorder index decreased from parent coals to the respective chars. Both micropore surface area and microporosity were observed to increase while the average micropore diameter decreased from coals to chars. This shows that blind and closed micropores were “opened up” during the charring process. Despite the original coal samples not showing much variation in their properties (except for their maceral content), it was generally observed that the subsequent chars exhibited substantial differences, both amongst themselves and from the parent coals. The increasing orders of magnitude of micropore surface area, microporosity, fraction of amorphous carbon and structural disorderliness were found to change in the transition, a good indication that the chars’ properties varied from that of the respective parent coals. Isothermal CO2 gasification experiments were conducted on the chars in a Thermax 500 thermogravimetric analyser in the temperature range of 900 – 950 °C with varying concentrations of CO2 (25 – 100 mol. %) in the CO2–N2 reaction gas mixture at ambient pressure (0.875 bar in Potchefstroom). The effects of temperature and CO2 concentration were observed to be in conformity with established trends. The initial reactivity of the chars was found to increase in the order: chars C2 < C < B < D2, with char D2 reactivity greater than the reactivity of the other chars by a factor > 4. Gasification reactivity results were correlated with properties of the parent coals and chars. Except for the rank parameter (the vitrinite reflectance), no significant trend was observed with any other coal petrographic property. Correlations with char properties gave more significant and systematic trends. Major factors affecting the gasification reactivity of the chars as it pertains to this investigation are: parent coal vitrinite reflectance, and: aromaticity, fraction of amorphous carbon, degree of disorder and alkali indices, micropore surface area, microporosity and average micropore diameter of the chars. The random pore model (chemical reaction controlling) was found to adequately describe the gasification reaction experimental data (both conversions and conversion rates). The determined activation energy ranged from 163.3 kJ·mol–1 for char D2 to 235.7 kJ·mol–1 for char B; while the order of reaction with respect to CO2 concentration ranged between 0.52 to 0.67 for the four chars. The lower activation energy of char D2 was possibly due to its lower rank, lower coal vitrinite reflectance and higher alkali index. The estimated kinetic parameters of the chars in this study correspond very well with published results in open literature. It was possible to express the intrinsic reactivity, rs, of the chars (rate of carbon conversion per unit total surface area) using kinetic results, in empirical Arrhenius forms. / Thesis (M.Ing. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2011.
14

Patterns of Coal Sedimentation in the Ipswich Basin Southeast Queensland

Chern, Peter Kyaw Zaw Naing January 2004 (has links)
The intermontane Ipswich Basin, which is situated 30km south-west of Brisbane, contains coal measures formed in the Late Triassic Epoch following a barren non-depositional period. Coal, tuff, and basalt were deposited along with fluvial dominated sediments. The Ipswich Coal Measures mark the resumption of deposition in eastern Australia after the coal hiatus associated with a series of intense tectonic activity in Gondwanaland during the Permo-Triassic interval. A transtensional tectonic movement at the end of the Middle Triassic deformed the Toogalawah Group before extension led to the formation of the Carnian Ipswich Coal Measures in the east. The Ipswich Coal Measures comprise the Brassall and Kholo Subgroups. The Blackstone Formation, which forms the upper unit of the Brassall Subgroup, contains seven major coal seams. The lower unit of the Brassall Subgroup, the Tivoli Formation, consists of sixteen stratigraphically significant coal seams. The typical thickness of the Blackstone Formation is 240m and the Tivoli Formation is about 500m. The coal seams of the Ipswich Basin differ considerably from those of other continental Triassic basins. However, the coal geology has previously attracted little academic attention and the remaining exposures of the Ipswich coalfield are rapidly disappearing now that mining has ceased. The primary aim of this project was to study the patterns of coal sedimentation and the response of coal seam characteristics to changing depositional environments. The coal accumulated as a peat-mire in an alluvial plain with meandering channel systems. Two types of peat-mire expansion occurred in the basin. Peat-mire aggradation, which is a replacement of water body by the peatmire, was initiated by tectonic subsidence. This type of peat-mire expansion is known as terrestrialisation. It formed thick but laterally limited coal seams in the basin. Whereas, peat-mire progradation was related to paludification and produced widespread coal accumulation in the basin. The coal seams were separated into three main groups based on the mean seam thickness and aerial distribution of one-meter and four-meter thickness contour intervals. Group 1 seams within the one-meter thickness interval are up to 15,000m2 in area, and seams within the four-meter interval have an aerial extent of up to 10,000m2. Group 1A contains the oldest seam with numerous intraseam clastic bands and shows a very high thickness to area ratio, which indicates high subsidence rates. Group 1B seams have moderately high thickness to area ratios. The lower clastic influx and slower subsidence rates favoured peat-mire aggradation. The Group 1A seam is relatively more widespread in aerial extent than seams from Group 1B. Group 1C seams have low mean thicknesses and small areas, suggesting short-lived peat-mires as a result of high clastic influx. Group 2 seams arebetween 15,000 and 35,000m2 in area within the one-meter interval, and between 5,000 and 10,000m2 within the four-meter interval. They have moderately high area to thickness ratios, indicating that peat-mire expansion occurred due to progressively shallower accommodation and a rising groundwater table. Group 3 seams, which have aerial extents from 35,000 to 45,000m2 within the one-meter thickness contour interval and from 10,000 to 25,000m2 within the four-meter interval, show high aerial extent to thickness ratios. They were deposited in quiet depositional environments that favoured prolonged existence of peat-mires. Group 3 seams are all relatively young whereas most Group 1 seams are relatively old seams. All the major fault systems, F1, F2 and F3, trend northwest-southeast. Apart from the West Ipswich Fault (F3), the F1 and F2 systems are broad Palaeozoic basement structures and thus they may not have had a direct influence on the formation of the much younger coal measures. However, the sedimentation patterns appear to relate to these major fault systems. Depocentres of earlier seams in the Tivoli Formation were restricted to the northern part of the basin, marked by the F1 system. A major depocentre shift occurred before the end of the deposition of the Tivoli Formation as a result of subsidence in the south that conformed to the F2 system configuration. The Blackstone Formation depocentres shifted to the east (Depocentre 1) and west (Depocentre 2) simultaneously. This depocentre shift was associated with the flexural subsidence produced by the rejuvenation of the West Ipswich Fault. Coal accumulation mainly occurred in Depocentre 1. Two types of seam splitting occurred in the Ipswich Basin. Sedimentary splitting or autosedimentation was produced by frequent influx of clastic sediments. The fluvial dominant depositional environments created the random distribution of small seam splits. However, the coincidence of seam splits and depocentres found in some of the seams suggests tectonic splitting. Furthermore, the progressive splitting pattern, which displays seam splits overlapping, was associated with continued basin subsidence. The tectonic splitting pattern is more dominant in the Ipswich Basin. Alternating bright bands shown in the brightness profiles are a result of oscillating water cover in the peat-mire. Moderate groundwater level, which was maintained during the development of the peat, reduced the possibility of salinisation and drowning of the peat swamp. On the other hand, a slow continuous rise of the groundwater table, that kept pace with the vertical growth of peat, prevented excessive oxidation of peat. Ipswich coal is bright due to its high vitrinite content. The cutinite content is also high because the dominant flora was pteridosperms of Dicroidium assemblage containing waxy and thick cuticles. Petrographic study revealed that the depositional environment was telmatic with bog forest formed under ombrotrophic to mesotrophic hydrological conditions. The high preservation of woody or structured macerals such as telovitrinite and semifusinite indicates that coal is autochthonous. The high mineral matter content in coal is possibly due to the frequent influx of clastic and volcanic sediments. The Ipswich Basin is part of a much larger Triassic basin extending to Nymboida in New South Wales. Little is known of the coal as it lacks exposures. It is apparently thin to absent except in places like Ipswich and Nymboida. This study suggests that the dominant control on depocentres of thick coal at Ipswich has been the tectonism. Fluvial incursions and volcanism were superimposed on this.

Page generated in 0.0447 seconds