• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Abstraktní studium úplnosti pro infinitární logiky / An abstract study of completeness in infinitary logics

Lávička, Tomáš January 2018 (has links)
In this thesis we study completeness properties of infinitary propositional logics from the perspective of abstract algebraic logic. The goal is to under- stand how the basic tool in proofs of completeness, the so called Linden- baum lemma, generalizes beyond finitary logics. To this end, we study few properties closely related to the Lindenbaum lemma (and hence to com- pleteness properties). We will see that these properties give rise to a new hierarchy of infinitary propositional logic. We also study these properties in scenarios when a given logic has some (possibly very generally defined) connectives of implication, disjunction, and negation. Among others, we will see that presence of these connectives can ensure provability of the Lin- denbaum lemma. Keywords: abstract algebraic logic, infinitary logics, Lindenbaum lemma, disjunction, implication, negation
2

Abstract Logics and Lindström's Theorem / Abstrakta Logiker och Lindströms Sats

Bengtsson, Niclas January 2023 (has links)
A definition of abstract logic is presented. This is used to explore and compare some abstract logics, such as logics with generalised quantifiers and infinitary logics, and their properties. Special focus is given to the properties of completeness, compactness, and the Löwenheim-Skolem property. A method of comparing different logics is presented and the concept of equivalent logics introduced. Lastly a proof is given for Lindström's theorem, which provides a characterization of elementary logic, also known as first-order logic, as the strongest logic for which both the compactness property and the Löwenheim-Skolem property, holds.

Page generated in 0.0562 seconds