• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

My4Sight: A Human Computation Platform for Improving Flu Predictions

Akupatni, Vivek Bharath 17 September 2015 (has links)
While many human computation (human-in-the-loop) systems exist in the field of Artificial Intelligence (AI) to solve problems that can't be solved by computers alone, comparatively fewer platforms exist for collecting human knowledge, and evaluation of various techniques for harnessing human insights in improving forecasting models for infectious diseases, such as Influenza and Ebola. In this thesis, we present the design and implementation of My4Sight, a human computation system developed to harness human insights and intelligence to improve forecasting models. This web-accessible system simplifies the collection of human insights through the careful design of the following two tasks: (i) asking users to rank system-generated forecasts in order of likelihood; and (ii) allowing users to improve upon an existing system-generated prediction. The structured output collected from querying human computers can then be used in building better forecasting models. My4Sight is designed to be a complete end-to- end analytical platform, and provides access to data collection features and statistical tools that are applied to the collected data. The results are communicated to the user, wherever applicable, in the form of visualizations for easier data comprehension. With My4Sight, this thesis makes a valuable contribution to the field of epidemiology by providing the necessary data and infrastructure platform to improve forecasts in real time by harnessing the wisdom of the crowd. / Master of Science
2

Prediction of Infectious Disease outbreaks based on limited information

Marmara, Vincent Anthony January 2016 (has links)
The last two decades have seen several large-scale epidemics of international impact, including human, animal and plant epidemics. Policy makers face health challenges that require epidemic predictions based on limited information. There is therefore a pressing need to construct models that allow us to frame all available information to predict an emerging outbreak and to control it in a timely manner. The aim of this thesis is to develop an early-warning modelling approach that can predict emerging disease outbreaks. Based on Bayesian techniques ideally suited to combine information from different sources into a single modelling and estimation framework, I developed a suite of approaches to epidemiological data that can deal with data from different sources and of varying quality. The SEIR model, particle filter algorithm and a number of influenza-related datasets were utilised to examine various models and methodologies to predict influenza outbreaks. The data included a combination of consultations and diagnosed influenza-like illness (ILI) cases for five influenza seasons. I showed that for the pandemic season, different proxies lead to similar behaviour of the effective reproduction number. For influenza datasets, there exists a strong relationship between consultations and diagnosed datasets, especially when considering time-dependent models. Individual parameters for different influenza seasons provided similar values, thereby offering an opportunity to utilise such information in future outbreaks. Moreover, my findings showed that when the temperature drops below 14°C, this triggers the first substantial rise in the number of ILI cases, highlighting that temperature data is an important signal to trigger the start of the influenza epidemic. Further probing was carried out among Maltese citizens and estimates on the under-reporting rate of the seasonal influenza were established. Based on these findings, a new epidemiological model and framework were developed, providing accurate real-time forecasts with a clear early warning signal to the influenza outbreak. This research utilised a combination of novel data sources to predict influenza outbreaks. Such information is beneficial for health authorities to plan health strategies and control epidemics.

Page generated in 0.0654 seconds