Spelling suggestions: "subject:"info:entrepo/classification/ddc/539"" "subject:"info:restrepo/classification/ddc/539""
51 |
The Mobilization of Actinides by Microbial Ligands Taking into Consideration the Final Storage of Nuclear Waste - Interactions of Selected Actinides U(VI), Cm(III), and Np(V) with Pyoverdins Secreted by Pseudomonas fluorescens and Related Model Compounds (Final Report BMBF Project No.: 02E9985)Glorius, M., Moll, H., Bernhard, G., Roßberg, A., Barkleit, A. January 2009 (has links)
The groundwater bacterium Pseudomonas fluorescens (CCUG 32456) isolated at a depth of 70 m in the Äspö Hard Rock Laboratory secretes a pyoverdin-mixture with four main components (two pyoverdins and two ferribactins). The dominant influence of the pyoverdins of this mixture could be demonstrated by an absorption spectroscopy study. The comparison of the stability constants of U(VI), Cm(III), and Np(V) species with ligands simulating the functional groups of the pyoverdins results in the following order of complex strength: pyoverdins (PYO) > trihydroxamate (DFO) > catecholates (NAP, 6HQ) > simple hydroxamates (SHA, BHA). The pyoverdin chromophore functionality shows a large affinity to bind actinides. As a result, pyoverdins are also able to complex and to mobilize elements other than Fe(III) at a considerably high efficiency. It is known that EDTA may form the strongest actinide complexes among the various organic components in nuclear wastes. The stability constants of 1:1 species formed between Cm(III) and U(VI) and pyoverdins are by a factor of 1.05 and 1.3, respectively, larger compared to the corresponding EDTA stability constants. The Np(V)-PYO stability constant is even by a factor of 1.83 greater than the EDTA stability constant. The identified Np(V)-PYO species belong to the strongest Np(V) species with organic material reported so far. All identified species influence the actinide speciation within the biologically relevant pH range. The metal binding properties of microbes are mainly determined by functional groups of their cell wall (LPS: Gram-negative bacteria and PG: Gram-positive bacteria). On the basis of the determined stability constants raw estimates are possible, if actinides prefer to interact with the microbial cell wall components or with the secreted pyoverdin bioligands. By taking pH 5 as an example, U(VI)-PYO interactions are slightly stronger than those observed with LPS and PG. For Cm(III) we found a much stronger affinity to aqueous pyoverdin species than to functional groups of the cell wall compartments. A similar behavior was observed for Np(V). This shows the importance of indirect interaction processes between actinides and bioligands secreted by resident microbes.
|
52 |
Silicon based microcavity enhanced light emitting diodesPotfajova, J. January 2009 (has links)
Realising Si-based electrically driven light emitters in a process technology compatible with mainstream microelectronics CMOS technology is key requirement for the implementation of low-cost Si-based optoelectronics and thus one of the big challenges of semiconductor technology. This work has focused on the development of microcavity enhanced silicon LEDs (MCLEDs), including their design, fabrication, and experimental as well as theoretical analysis. As a light emitting layer the abrupt pn-junction of a Si-diode was used, which was fabricated by ion implantation of boron into n-type silicon. Such forward biased pn-junctions exhibit room-temperature EL at a wavelength of 1138 nm with a reasonably high power efficiency of 0.1% [1]. Two MCLEDs emitting light at the resonant wavelength about 1150 nm were demonstrated: a) 1 MCLED with the resonator formed by 90 nm thin metallic CoSi2 mirror at the bottom and semitranparent distributed Bragg reflector (DBR) on the top; b) 5:5 MCLED with the resonator formed by high reflecting DBR at the bottom and semitransparent top DBR. Using the appoach of the 5:5 MCLED with two DBRs the extraction efficiency is enhanced by about 65% compared to the silicon bulk pn-junction diode.:List of Abbreviations and Symbols
1 Introduction and motivation
2 Theory
2.1 Electronic band structure of semiconductors
2.2 Light emitting diodes (LED)
2.2.1 History of LED
2.2.2 Mechanisms of light emission
2.2.3 Electrical properties of LED
2.2.4 LED e ciency
2.3 Si based light emitters
2.4 Microcavity enhanced light emitting pn-diode
2.4.1 Bragg reflectors
2.4.2 Fabry-Perot resonators
2.4.3 Optical mode density and emission enhancement in coplanar Fabry-Perot resonator
2.4.4 Design and optical properties of a Si microcavity LED
3 Preparation and characterisation methods
3.1 Preparation techniques
3.1.1 Thermal oxidation of silicon
3.1.2 Photolithography
3.1.3 Wet chemical cleaning and etching
3.1.4 Ion implantation
3.1.5 Plasma Enhanced Chemical Vapour Deposition (PECVD) of silicon nitride
3.1.6 Magnetron sputter deposition
3.2 Characterization techniques
3.2.1 Variable Angle Spectroscopic Ellipsometry (VASE)
3.2.2 Fourier Transform Infrared Spectroscopy (FTIR)
3.2.3 Microscopy
3.2.4 Electroluminescence and photoluminescence measurements
4 Experiments, results and discussion
4.1 Used substrates
4.1.1 Silicon substrates
4.1.2 Silicon-On-Insulator (SOI) substrates
4.2 Fabrication and characterization of distributed Bragg reflectors
4.2.1 Deposition and characterization of SiO2
4.2.2 Deposition of Si
4.2.3 Distributed Bragg Reflectors (DBR)
4.2.4 Conclusions
4.3 Design of Si pn-junction LED
4.4 Resonant microcavity LED with CoSi2 bottom mirror
4.4.1 Device preparation
4.4.2 Electrical Si diode characteristics
4.4.3 EL spectra
4.4.4 Conclusions
4.5 Si based microcavity LED with two DBRs
4.5.1 Test device
4.5.2 Device fabrication
4.5.3 LED on SOI versus MCLED
4.5.4 Conclusions
5 Summary and outlook
5.1 Summary
5.2 Outlook
A Appendix
A.1 The parametrization of optical constants
A.1.1 Kramers-Kronig relations
A.1.2 Forouhi-Bloomer dispersion formula
A.1.3 Tauc-Lorentz dispersion formula
A.1.4 Sellmeier dispersion formula
A.2 Wafer holder
List of publications
Acknowledgements
Declaration / Versicherung
|
53 |
The Tensor Analyzing Power T20 in Deuteron Break-up Reactions within the Bethe-Salpeter FormalismKaptari, L. P., Umnikov, A. Y., Kämpfer, B., Khanna, F. C. January 1994 (has links)
The tenser analyzing power T-20 and the polarization transfer kappa in the deuteron break-up reaction Dp --> pX are calculated within a relativistic approach based on the Bethe-Salpeter equation with a realistic meson-exchange potential. Our results on T-20, kappa and the cross section are compared with experimental data and non-relativistic calculations and with the outcome of a relativization procedure of the deuteron wave function.
|
54 |
Application of the Master Curve approach to fracture mechanics characterisation of reactor pressure vessel steelViehrig, H.-W., Kalkhof, D. January 2010 (has links)
The paper presents results of a research project founded by the Swiss Federal Nuclear Inspectorate concerning the application of the Master Curve approach in nuclear reactor pressure vessels integrity assessment. The main focus is put on the applicability of pre-cracked 0.4T-SE(B) specimens with short cracks, the verification of transferability of MC reference temperatures T0 from 0.4T thick specimens to larger specimens, ascertaining the influence of the specimen type and the test temperature on T0, investigation of the applicability of specimens with electroerosive notches for the fracture toughness testing, and the quantification of the loading rate and specimen type on T0. The test material is a forged ring of steel 22 NiMoCr 3 7 of the uncommissioned German pressurized water reactor Biblis C.
SE(B) specimens with different overall sizes (specimen thickness B=0.4T, 0.8T, 1.6T, 3T, fatigue pre-cracked to a/W=0.5 and 20% side-grooved) have comparable T0. T0 varies within the 1σ scatter band. The testing of C(T) specimens results in higher T0 compared to SE(B) specimens. It can be stated that except for the lowest test temperature allowed by ASTM E1921-09a, the T0 values evaluated with specimens tested at different test temperatures are consistent. The testing in the temperature range of T0 ± 20 K is recommended because it gave the highest accuracy. Specimens with a/W=0.3 and a/W=0.5 crack length ratios yield comparable T0. The T0 of EDM notched specimens lie 41 K up to 54 K below the T0 of fatigue pre-cracked specimens. A significant influence of the loading rate on the MC T0 was observed. The HSK AN 425 test procedure is a suitable method to evaluate dynamic MC tests. The reference temperature T0 is eligible to define a reference temperature RTTo for the ASME-KIC reference curve as recommended in the ASME Code Case N-629. An additional margin has to be defined for the specific type of transient to be considered in the RPV integrity assessment. This margin also takes into account the level of available information of the RPV to be assessed.
|
55 |
WTZ mit Russland - Transientenanalysen für Kernreaktoren - AbschlussberichtRohde, Ulrich, Kozmenkov, Yaroslav, Pivovarov, Valeri, Matveev, Yurij January 2010 (has links)
Der Reaktordynamikcodes DYN3D wurde in der neu entwickelten Mehrgruppen-Version DYN3D-MG für die Anwendung auf wassergekühlte Reaktoren alternativ zu industriellen DWR und SWR ertüch-tigt. Es wurde die Anwendbarkeit für den graphitmoderierten Druckröhrenreaktor EGP-6 (KKW Bilibi-no), eine Konzeptstudie eines fortgeschrittenen Siedewasserreaktors mit schnellem Neutronenspekt-rum (RMWR) und das Reaktorkonzept RUTA-70 zur Wärmeversorgung nachgewiesen. Beim RUTA-Reaktor geht es vor allem um die Modellierung des Naturumlaufs des Kühlmittels bei niedrigen Sys-temdrücken. Zur Validierung wurden Experimente zu flashing-induzierten Naturumlaufinstabilitäten an der Versuchsanlage CIRCUS der TU Delft mit RELAP5 nachgerechnet. Für die Anwendung von DYN3D auf die alternativen Reaktorkonzepte wurden Modellerweiterungen und Anpassungen vorgenommen, u.a. Modifikationen in den Wärmeleitungs- und -übergangsmodellen. Vergleichsrechnungen mit dem stationären russischen Feingitter-Diffusionscode ACADEM ergänzen die Verifikationsdatenbasis von DYN3D-MG. Zur Validierung wurden zwei reak-tordynamische Experimente am Reaktor EGP-6 nachgerechnet. Für Reaktoren EGP-6, RMWR und RUTA wurden verschiedene Transienten mit Ausfahren von Re-gelstäben mit und ohne Reaktorschnellabschaltung gerechnet. Weiterhin wurden Analysen für den ATWS-Störfall \"Abschalten aller Hauptkühlmittelpumpen bei Vollleistung\" für den RUTA-Reaktor mit den gekoppelten Programmkomplexen DYN3D/ATHLET und DYN3D/RELAP5 durchgeführt. Der Reaktor geht in einen sicheren Zustand mit reduzierter Leistung bei Naturumlauf des Kühlmittels über. Die Ergebnisse von Analysen zum unkontrollierten Ausfahren einer Regelgruppe für den RMWR lassen dagegen eine belastbare Schlussfolgerung bezüglich der Beherrschbarkeit des Aus-fahrens einer Regelgruppe nicht zu. Abschließend wurde der Nutzen der Programmertüchtigung von DYN3D für die Anwendung auf GenIV -Konzepte und LWR mit hohem Konversionsfaktor bewertet.
|
56 |
Air-water experiments in a vertical DN200-pipeBeyer, M., Lucas, D., Kussin, J., Schütz, P. January 2008 (has links)
The extensive experimental results presented in this report provide a high-quality database for air-/water flows in a vertical pipe with a nominal diameter of 200 mm. This database can be used for the development and validation of CFD-like models for two-phase flows, e.g. for bubble coalescence and fragmentation. In particular, the investigations aim on the evolution of the two-phase flow along the pipe height. Therefore, up to 18 single measurements with varying distances between the gas injection and measurement plane were realised for each of the 92 combinations of gas and water flow rates. The pressure at the position of the activated gas injection was kept constant at 0.25 MPa(a). This boundary condition has the advantage that the measured data represent exactly the evolution of the flow along the pipe, i.e. they reflect a configuration at which the gas injection is at a fixed height position, while the measurement plane varies. Important results of this test series are time averaged radial profiles of the gas fraction, and the gas velocity, as well as the time and cross-section averaged bubble size distributions. Furthermore, gas fraction data resolved regarding the bubble size and spatial distribution are presented. As in previous test series, flow patterns were analysed, whereby the classification results from the bubble size. A substantial part of these new air/water experiments were quality and plausibility checks of the measured data. In the result, a clear and consistent trend regarding their evolution with increasing distance from the position of the gas injection was found. Comparisons of the trend of time and cross section averaged gas volume fraction along the pipe height with the theoretically expected values were carried out. The influence of the orifice diameter of the gas injection on flow patterns is also discussed in the report.
|
57 |
Luft-Wasser Experimente im vertikalen DN200-RohrBeyer, M., Lucas, D., Kussin, J., Schütz, P. January 2008 (has links)
Die im Rahmen dieser Versuchsserie erzielten umfangreichen experimentellen Ergebnisse bilden eine hochwertige Datenbasis für Luft-Wasser-Strömungen in einem vertikalen DN200-Rohr, die für die Entwicklung und Validierung von CFD-Modellen, beispielweise bzgl. Blasenkoaleszenz und -fragmentierung, genutzt werden können. Besonderes interessant ist die Untersuchung der Entwicklung der Zweiphasenströmung über der Rohrhöhe. Aus diesem Grund wurden für jede der 92 betrachteten Kombinationen aus Gas- und Wasser-Volumenstromdichten bis zu 18 Messungen mit variablen Abständen zwischen Gaseinspeisung und Messebene durchgeführt. Dabei wurde der Druck an der Gaseinspeisestelle konstant auf 0,25 MPa(a) gehalten. Diese Randbedingung bietet den Vorteil, dass die so gemessenen Daten die Entwicklung der Strömung über der Rohrhöhe widerspiegeln, d.h. eine Konfiguration beschreiben, bei der das Gas an einer festen Höhenposition eingespeist wird und die Messungen in verschiedenen darüberliegenden Ebenen erfolgen. Wesentliche Ergebnisse dieser Messserie sind radiale zeitgemittelte Profile für den Gasgehalt und die Gasgeschwindigkeit sowie zeit- und querschnittsgemittelte Blasengrößenverteilungen. Außerdem liegen blasengrößen- und ortsaufgelöste Gasgehaltsdaten vor. Wie bereits bei früheren Versuchsserien wurden auch in diesem Fall die Strömungsformen analysiert, wobei die Klassifizierung anhand der Blasengröße erfolgte. Ein wesentlicher Bestandteil dieser neuen Luft/Wasser-Versuche war die Qualitäts- und Plausibilitätsprüfung der Messdaten. Es konnte festgestellt werden, dass die Daten einen eindeutigen, widerspruchsfreien Trend bzgl. ihrer Entwicklung mit zunehmendem Abstand von der Gaseinspeisung aufweisen. Zur Plausibilitätsprüfung wurden Vergleiche des Gasgehaltsverlaufes über der Rohrhöhe mit theoretisch zu erwartenden Kurven durchgeführt. Zusätzlich zu diesen Ergebnissen enthält der Bericht eine Einschätzung des Einflusses des Bohrungsdurchmessers an der Gaseinspeisung auf die sich einstellende Strömung.
|
58 |
The 14N(p,γ)O15 reaction studied at low and high beam energyMarta, Michele January 2012 (has links)
The Bethe-Weizsäcker cycle consists of a set of nuclear reactions that convert hydrogen into helium and release energy in the stars. It determines the luminosity of low-metal stars at their turn-off from the main-sequence in the Hertzsprung-Russel diagram, so its rate enters the calculation of the globular clusters’ age, an independent lower limit on the age of the universe. The cycle contributes less than 1% to our Sun’s luminosity, but it produces neutrinos that can in principle be measured on Earth in underground experiments and bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision.
The 14N(p,γ)15O reaction is the slowest reaction of the Bethe-Weizs¨acker cycle and establishes its rate. Its cross section is the sum of the contributions by capture to different excited levels and to the ground state in 15O. Recent experiments studied the region of the resonance at Ep = 278 keV. Only one modern data set from an experiment performed in 1987 is available for the high-energy domain. Both energy ranges are needed to constrain the fit of the excitation function in the R-matrix framework and to obtain a reliable extrapolated S-factor at the very low astrophysical energies.
The present research work studied the 14N(p,γ)15O reaction in the LUNA (Laboratory for Underground Nuclear Astrophysics) underground facility at three proton energies 0.36, 0.38, 0.40MeV, and in Dresden in the energy range Ep = 0.6 - 2MeV. In both cases, an intense proton beam was sent on solid titanium nitride sputtered targets, and the prompt photons emitted from the reaction were detected with germanium detectors.
At LUNA, a composite germanium detector was used. This enabled a measurement with dramatically reduced summing corrections with respect to previous studies. The cross sections for capture to the ground state and to the excited states at 5181, 6172, and 6792 keV in 15O have been determined. An R-matrix fit was performed for capture to the ground state, that resolved the literature discrepancy of a factor two on the extrapolated S-factor. New precise branching ratios for the decay of the Ep = 278 keV resonance were measured.
In Dresden, the strength of the Ep = 1058 keV resonance was measured relative to the well-known resonance at Ep = 278 keV, after checking the angular distribution. Its uncertainty is now half of the error quoted in literature. The branching ratios were also measured, showing that their recommended values should be updated. Preliminary data for the two most intense transitions off resonance are provided.
The presence in the targets of the other stable nitrogen isotope 15N with its well- known isotopic abundance, allowed to measure the strength of two resonances at Ep = 430 and 897 keV of the 15N(p,αγ)12 C reaction, improving the precision for hydrogen depth profiling.
|
59 |
Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardmentNumazawa, Satoshi January 2012 (has links)
This thesis addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism.
Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO^2 surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature.
An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and ≈1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns.
The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multi-dimensional Boolean valued functions in three dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion.
The third topic is the formation of ripple structures on ion bombarded semiconductor surfaces treated in the first topic as the prepatterned substrate of the metallic deposition. This intriguing phenomenon has been known since the 1960\'s and various theoretical approaches have been explored. These previous models are discussed and a new non-linear model is formulated, based on the local atomic flow and associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important and it is shown that in this case, certain \\lq magic\' angles can occur at which the ripple patterns are most clearly defined. The results including some analytic solutions of the nonlinear equation of motions are in very good agreement with experimental observation.
|
60 |
Quantitative dopant profiling in semiconductors: A new approach to Kelvin probe force microscopyBaumgart, Christine January 2012 (has links)
Failure analysis and optimization of semiconducting devices request knowledge of their electrical properties. To meet the demands of today’s semiconductor industry, an electrical nanometrology technique is required which provides quantitative information about the doping profile and which enables scans with a lateral resolution in the sub-10 nm range. In the presented work it is shown that Kelvin probe force microscopy (KPFM) is a very promising electrical nanometrology technique to face this challenge. The technical and physical aspects of KPFM measurements on semiconductors required for the correct interpretation of the detected KPFM bias are discussed. A new KPFM model is developed which enables the quantitative correlation between the probed KPFM bias and the dopant concentration in the investigated semiconducting sample. Quantitative dopant profiling by means of the new KPFM model is demonstrated by the example of differently structured, n- and p-type doped silicon. Additionally, the transport of charge carriers during KPFM measurements, in particular in the presence of intrinsic electric fields due to vertical and horizontal pn junctions as well as due to surface space charge regions, is discussed. Detailed investigations show that transport of charge carriers in the semiconducting sample is a crucial aspect and has to be taken into account when aiming for a quantitative evaluation of the probed KPFM bias.
|
Page generated in 0.1105 seconds