Spelling suggestions: "subject:"info:entrepo/classification/ddc/571.84"" "subject:"info:restrepo/classification/ddc/571.84""
1 |
In vitro modeling of neuronal ceroid lipofuscinosis (NCL): Patient fibroblasts and their reprogrammed derivatives as human models of NCLLojewski, Xenia 09 July 2013 (has links)
The discovery of resetting human somatic cells via introduction of four transcription factors into an embryonic stem cell-like state that enables the generation of any cell type of the human body has revolutionized the field of medical science. The generation of patient-derived iPSCs and the subsequent differentiation into the cells of interest has been, nowadays, widely used as model system for various inherited diseases.
The aim of this thesis was to generate iPSCs and to subsequently derive NPCs which can be differentiated into neurons in order to model the two most common forms of the NCLs: LINCL which is caused by mutations within the TPP1 gene, encoding a lysosomal enzyme, and JNCL which is caused by mutations within the CLN3 gene, affecting a lysosomal transmembrane protein.
It was shown that patient-derived fibroblasts can be successfully reprogrammed into iPSCs by using retroviral vectors that introduced the four transcription factors POU5F1, SOX2, KLF4 and MYC. The generated iPSCs were subsequently differentiated into expandable NPCs and finally into mature neurons.
Phenotype analysis during the different stages, namely pluripotent iPSCs, multipotent NPCs and finally differentiated neurons, revealed a genotype-specific progression of the disease. The earliest events were observed in organelle disruption such as mitochondria, Golgi and ER which preceded the accumulation of subunit c of the mitochondrial ATPase complex that was only apparent in neurons. However, none of these events led to neurodegeneration in vitro.
The established disease models recapitulate phenotypes reported in other NCL disease models such as mouse, dog and sheep model systems. More importantly, the hallmark of the NCLs, accumulation of subunit c in neurons, could be reproduced during the course of disease modeling which demonstrates the suitability of the established system. Moreover, the derived expandable NPC populations can be used for further applications in drug screenings. Their robust phenotypes such as low levels of TPP1 activity in LINCL patient-derived NPCs or cytoplasmic vacuoles, containing storage material, observed in CLN3 mutant NPCs, should serve as possible phenotypic read-outs.
|
2 |
Untersuchungen zum Einfluss von artifiziellen extrazellulären Matrizes und elektrischen Feldern auf humane mesenchymale StammzellenHeß, Ricarda 20 June 2013 (has links)
Eine bevorzugte Zellquelle für den Einsatz im Tissue Engineering sind mesenchymale Stammzellen (MSZ). Diese besitzen, neben einer hohen Proliferationsrate, die Fähigkeit, sich in verschiedene Zellen des mesodermen Ursprungs und in die entsprechenden Gewebetypen zu entwickeln. Um ein funktionales Gewebe zu erhalten ist es Ziel, sich bereits in vitro den in vivo Bedingungen anzunähern. Hierbei spielen neben der dreidimensionalen Struktur der Scaffolds auch die biochemische Mikroumgebung der Zellen in Form der unlöslichen extrazellulären Matrix (EZM) und den löslichen Mediatorproteinen wie Wachstums- und Differenzierungsfaktoren, sowie die physikalische Stimulation der Zellen eine wichtige Rolle. Während sich gegenwärtige Untersuchungen im TE vorwiegend mit den alleinigen Einflussfaktoren beschäftigen, verfolgt die vorliegende Arbeit das Ziel, die Auswirkungen kombinierter Stimuli durch Verwendung einer artifiziellen EZM, bestehend aus definierten Komponenten der nativen EZM, und physikalischer Stimuli durch elektrische Felder zu untersuchen. Letzteres erfolgte mit einem innerhalb der Arbeitsgruppe neu entwickelten System, dass die Stimulation von Zellen mit ausschließlich elektrischen Feldern, ohne störende Nebeneinflüsse, erlaubt.:1 Einleitung und Zielstellung
2 Theoretische Grundlagen
2.1 Der Knochen
2.1.1 Allgemeine Biologie und Physiologie des Knochengewebes
2.1.2 Knochenersatzmaterialien
2.2 Tissue Engineering von Knochengewebe
2.2.1 Trägermaterialien für das TE von Knochen
2.2.2 Zellen für das TE von Knochen
2.2.3 Artifizielle extrazelluläre Matrizes für das TE von Knochen
2.3 Einfluss elektrischer Felder auf Knochenumbauprozesse
2.3.1 Methoden zur Applikation von elektrischen Feldern
2.3.2 In vitro Untersuchungen zum Einfluss elektrischer Felder
2.3.3 Methode der Transformator-ähnlichen Einkopplung (TC)
3 Materialien
3.1 Technische Hilfsmittel und Geräte
3.2 Verbrauchsmaterialien
3.3 Chemikalien, Reagenzien und Kits
3.4 Antikörper
3.5 Oligonukleotide
3.6 Puffer-, Medien- und Lösungszusammensetzungen
3.7 Zellen
4 Methoden
4.1 Polycaprolacton-Co-Lactid (PCL)-Scaffolds
4.1.1 Präparation und Hydrophilisierung der PCL-Scaffolds
4.1.2 Beschichtung der PCL-Scaffolds
4.1.3 Charakterisierung der Beschichtung auf den PCL-Scaffolds
4.2 Zellkulturtechniken
4.2.1 Auftauen und Subkultivierung
4.2.2 Einfrieren
4.2.3 Induktion der osteogenen Differenzierung
4.2.4 Induktion der adipogenen Differenzierung
4.2.5 Induktion der chondrogenen Differenzierung
4.2.6 Besiedlung und Kultivierung der Zell-Matrix-Konstrukte
4.2.7 Elektrische Stimulation der Zell-Matrix-Konstrukte
4.2.8 Blockierung definierter Signaltransduktionswege
4.3 Mikroskopische Analytik der Zellen
4.3.1 Darstellung der Zellverteilung mittels Rasterelektronenmikroskopie (REM)
4.3.2 Qualitative Bestimmung von Fetttröpfchen mittels Oil-Red-O Färbung
4.3.3 Qualitative Bestimmung der Mineralisierung mittels vonKossa-
Färbung
4.4 Durchflusszytometrie
4.5 Biochemische Analytik der Zellen
4.5.1 Bestimmung der Zellzahl mittels Lactatdehydrogenase (LDH)-
Aktivität
4.5.2 Bestimmung der alkalische Phosphatase (ALP)-Aktivität
4.5.3 Quantitative Bestimmung des Kalziumgehaltes
4.6 Molekularbiologische Analytik / Genexpressionsanalyse
4.6.1 RNA Extraktion
4.6.2 cDNA-Synthese / Reverse Transkriptase PCR (RT-PCR)
4.6.3 Amplifikation von cDNA mittels quantitativer Real-Time PCR
(qPCR)
4.7 Statistische Auswertung
5 Weiterentwicklung der Kammer zur TC-Einkopplung
5.1 Grundlegende theoretische Betrachtungen zur TC-Einkopplung
5.1.1 Ersatzschaltbild der TC-Einkopplung
5.1.2 Abschätzung des Eisenkernquerschnitts
5.1.3 Einfluss der Primärwindungszahl
5.2 Neudimensionierung und Aufbau der Stimulationseinrichtung
5.3 Verlauf der elektrischen Größen
5.3.1 Simulation
5.3.2 Messung
5.3.3 Abschätzung des magnetischen Feldes in der Kammer
5.4 Zusammenfassung
6 Zellexperimentelle Ergebnisse
6.1 Charakterisierung der humanen MSZ nach in vitro Kultivierung
6.1.1 Morphologie
6.1.2 Phänotypische Charakterisierung mittels Durchflusszytometrie
6.1.3 Multipotentes Differenzierungspotential
6.2 Zellverhalten auf den unbeschichteten PCL-Scaffolds
6.2.1 Ermittlung eines geeigneten Besiedlungsregimes
6.2.2 Zellverteilung und Proliferation der MSZ
6.2.3 Osteogene Differenzierung der MSZ
6.3 Einfluss der aEZM auf das Zellverhalten von MSZ
6.3.1 Quantitative Bestimmung der aEZM-Komponenten
6.3.2 Einfluss der aEZM auf die Adhärenz und Proliferation von MSZ
6.3.3 Einfluss der aEZM auf die osteogene Differenzierung von MSZ
6.4 Einfluss elektrischer Felder auf das Zellverhalten von MSZ
6.4.1 Einfluss der elektrischen Felder auf die Proliferation und osteogene Differenzierung von MSZ
6.4.2 Einfluss elektrischer Felder in Kombination mit Koll/sHya enthaltenden aEZM auf die Proliferation und osteogene Differenzierung von MSZ
6.4.3 Untersuchungen zu möglichen Signaltransduktionswegen
7 Diskussion der Ergebnisse
7.1 Charakterisierung der humanen MSZ nach in vitro Kultivierung
7.2 Zellverhalten auf den unbeschichteten PCL-Scaffolds
7.3 Einfluss der aEZM auf das Zellverhalten von MSZ
7.4 Einfluss elektrischer Felder auf das Zellverhalten von MSZ
8 Zusammenfassung und Ausblick
Literaturverzeichnis
Danksagung
Eigene Publikationen und Mitautorschaften
A Zusatzinformationen für die quantitative RT-PCR
A.1 Versuchsdesign der Genexpressionsanalysen
A.2 Qualitätskontrolle der isolierten RNA
|
Page generated in 0.1339 seconds