Spelling suggestions: "subject:"info:entrepo/classification/ddc/572.88"" "subject:"info:restrepo/classification/ddc/572.88""
1 |
miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomesHsu, Paul W.C., Huang, Hsien-Da, Hsu, Sheng-Da, Lin, Li-Zen, Tsou, Ann-Ping, Tseng, Ching-Ping, Stadler, Peter F., Washietl, Stefan, Hofacker, Ivo L. 04 February 2019 (has links)
Recent work has demonstrated that microRNAs (miRNAs) are involved in critical biological processes by suppressing the translation of coding genes. This work develops an integrated database, miRNAMap, to
store the known miRNA genes, the putative miRNA genes, the known miRNA targets and the putative miRNAtargets. The knownmiRNAgenes in fourmammalian genomes such as human, mouse, rat and dog
are obtained from miRBase, and experimentally validated miRNA targets are identified in a survey of the literature. Putative miRNA precursors were identified by RNAz, which is a non-coding RNA prediction tool
based oncomparative sequence analysis. The mature miRNA of the putative miRNA genes is accurately determined using a machine learning approach, mmiRNA. Then, miRanda was applied to predict the
miRNAtargets within the conserved regions in 30-UTR of the genes in the four mammalian genomes. The miRNAMap also provides the expression profiles of the known miRNAs, cross-species comparisons,
gene annotations and cross-links to other biological databases. Both textual and graphical web interface are provided to facilitate the retrieval of data from the miRNAMap.
|
2 |
The expansion of the metazoan microRNA repertoireHertel, Jana, Lindemeyer, Manuela, Missal, Kristin, Fried, Claudia, Tanzer, Andrea, Flamm, Christoph, Hofacker, Ivo L., Stadler, Peter F. 04 February 2019 (has links)
Background:
MicroRNAs have been identified as crucial regulators in both animals and plants.Here we report on a comprehensive comparative study of all known miRNA families in animals.We expand the MicroRNA Registry 6.0 by more than 1000 new homologs of miRNA precursorswhose expression has been verified in at least one species. Using this uniform data basis we analyzetheir evolutionary history in terms of individual gene phylogenies and in terms of preservation ofgenomic nearness across species. This allows us to reliably identify microRNA clusters that arederived from a common transcript.
Results:
We identify three episodes of microRNA innovation that correspond to majordevelopmental innovations: A class of about 20 miRNAs is common to protostomes anddeuterostomes and might be related to the advent of bilaterians. A second large wave ofinnovations maps to the branch leading to the vertebrates. The third significant outburst of miRNAinnovation coincides with placental (eutherian) mammals. In addition, we observe the expectedexpansion of the microRNA inventory due to genome duplications in early vertebrates and in anancestral teleost. The non-local duplications in the vertebrate ancestor are predated by local(tandem) duplications leading to the formation of about a dozen ancient microRNA clusters.
Conclusion:
Our results suggest that microRNA innovation is an ongoing process. Majorexpansions of the metazoan miRNA repertoire coincide with the advent of bilaterians, vertebrates,and (placental) mammals.
|
3 |
Conserved RNA PseudoknotsThurner, Caroline, Hofacker, Ivo L., Stadler, Peter F. 16 October 2018 (has links)
Pseudoknots are essential for the functioning of many small RNA molecules.
In addition, viral RNAs often exhibit pseudoknots that are required at various stages
of the viral life-cycle. Techniques for detecting evolutionarily conserved, and hence
most likely functional RNA pseudoknots, are therefore of interest. Here we present an extension of the alidot approach that extracts conserved secondary structures from a multiple sequence alignment and predicted secondary structures of the individual sequences. In contrast to purely phylogenetic methods, this approach yields good results already for small samples of 10 sequences or even less.
|
4 |
RNAs Everywhere: genome‐wide annotation of structured RNAsBackofen, Rolf, Bernhart, Stephan H., Flamm, Christoph, Fried, Claudia, Fritzsch, Guido, Hackermüller, Jörg, Hertel, Jana, Hofacker, Ivo L., Missal, Kristin, Mosig, Axel, Prohaska, Sonja J., Rose, Dominic, Stadler, Peter F., Tanzer, Andrea, Washietl, Stefan, Will, Sebastian 09 November 2018 (has links)
Starting with the discovery of microRNAs and the advent of genome‐wide transcriptomics, non‐protein‐coding transcripts have moved from a fringe topic to a central field research in molecular biology. In this contribution we review the state of the art of “computational RNomics”, i.e., the bioinformatics approaches to genome‐wide RNA annotation. Instead of rehashing results from recently published surveys in detail, we focus here on the open problem in the field, namely (functional) annotation of the plethora of putative RNAs. A series of exploratory studies are used to provide non‐trivial examples for the discussion of some of the difficulties.
|
5 |
Variations on RNA folding and alignment: lessons from BenasqueBompfünewerer, Athanasius F., Backofen, Rolf, Bernhart, Stephan H., Hertel, Jana, Hofacker, Ivo L., Stadler, Peter F., Will, Sebastian 09 November 2018 (has links)
Dynamic Programming Algorithms solve many standard problems of RNA bioinformatics in polynomial time. In this contribution we discuss a series of variations on these standard methods that implement refined biophysical models, such as a restriction of RNA folding to canonical structures, and an extension of structural alignments to an explicit scoring of stacking propensities. Furthermore, we demonstrate that a local structural alignment can be employed for ncRNA gene finding. In this context we discuss scanning variants for folding and alignment algorithms.
|
6 |
Arthropod 7SK RNAGruber, Andreas R., Kilgus, Carsten, Mosig, Axel, Hofacker, Ivo L., Hennig, Wolfgang, Stadler, Peter F. 25 January 2019 (has links)
The 7SK small nuclear RNA (snRNA) is a key player in the regulation of polymerase (pol) II transcription. The 7SK RNA was long believed to be specific to vertebrates where it is highly conserved. Homologs in basal deuterostomes and a few lophotrochozoan species were only recently reported. On longer timescales, 7SK evolves rapidly with only few conserved sequence and structure motifs. Previous attempts to identify the Drosophila homolog thus have remained unsuccessful despite considerable efforts. Here we report on the discovery of arthropod 7SK RNAs using a novel search strategy based on pol III promoters, as well as the subsequent verification of its expression. Our results demonstrate that a 7SK snRNA featuring 2 highly structured conserved domains was present already in the bilaterian ancestor.
|
7 |
Invertebrate 7SK snRNAsGruber, Andreas R., Koper-Emde, Dorota, Marz, Manja, Tafer, Hakim, Bernhart, Stephan, Obernosterer, Gregor, Mosig, Axel, Hofacker, Ivo L., Stadler, Peter F., Benecke, Bernd-Joachim 25 January 2019 (has links)
7SK RNA is a highly abundant noncoding RNA in mammalian cells whose function in transcriptional regulation has only recently been elucidated. Despite its highly conserved sequence throughout vertebrates, all attempts to discover 7SK RNA homologues in invertebrate species have failed so far. Here we report on a combined experimental and computational survey that succeeded in discovering 7SK RNAs in most of the major deuterostome clades and in two protostome phyla: mollusks and annelids. Despite major efforts, no candidates were found in any of the many available ecdysozoan genomes, however. The additional sequence data confirm the evolutionary conservation and hence functional importance of the previously described 3´ and 5´ stemloop motifs, and provide evidence for a third, structurally well-conserved domain.
|
8 |
Evolutionary patterns of non-coding RNAsBompfünewerer, Athanasius F., Flamm, Christoph, Fried, Claudia, Fritzsch, Guido, Hofacker, Ivo L., Lehmann, Jörg, Missal, Kristin, Mosig, Axel, Müller, Bettina, Prohaska, Sonja J., Stadler, Bärbel M. R., Stadler, Peter F., Tanzer, Andrea, Washietl, Stefan, Witwer, Christina 12 November 2018 (has links)
A plethora of new functions of non-coding RNAs have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this \Modern RNA World' and its components. In this contribution we attempt to provide at least a cursory overview of the diversity of non-coding RNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of
Y RNA genes in vertebrates, studies of the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of microRNAs in metazoans, which suggests an explosive increase in the microRNA repertoire in vertebrates. The analysis of the transcription of non-coding RNAs (ncRNAs) suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
|
9 |
Conserved RNA secondary structures in Flaviviridae genomesThurner, Caroline, Witwer, Christina, Hofacker, Ivo L., Stadler, Peter F. 16 October 2018 (has links)
Presented here is a comprehensive computational survey of evolutionarily conserved secondary structure motifs in the genomic RNAs of the family Flaviviridae. This virus family consists of the three genera Flavivirus, Pestivirus and Hepacivirus and the group of GB virus C/hepatitis G virus with a currently uncertain taxonomic classification. Based on the control of replication and translation, two subgroups were considered separately: the genus Flavivirus, with its type I cap structure at the 5′ untranslated region (UTR) and a highly structured 3′ UTR, and the remaining three groups, which exhibit translation control by means of an internal ribosomal entry site (IRES) in the 5′ UTR and a much shorter less-structured 3′ UTR. The main findings of this survey are strong hints for the possibility of genome cyclization in hepatitis C virus and GB virus C/hepatitis G virus in addition to the flaviviruses; a surprisingly large number of conserved RNA motifs in the coding regions; and a lower level of detailed structural conservation in the IRES and 3′ UTR motifs than reported in the literature. An electronic atlas organizes the information on the more than 150 conserved, and therefore putatively functional, RNA secondary structure elements.
|
10 |
The Effect of RNA Secondary Structures on RNA-Ligand Binding and the Modifier RNA Mechanism: A Quantitative ModelHackermüller, Jörg, Meisner, Nicole-Claudia, Auer, Manfred, Jaritz, Markus, Stadler, Peter F. 31 January 2019 (has links)
RNA-ligand binding often depends crucially on the local RNA secondary structure at the binding site. We develop here a model that quantitatively predicts the effect of RNA secondary structure on effective RNA-ligand binding activities based on equilibrium thermodynamics and the explicit computations of partition functions for the RNA structures. A statistical test for the impact of a particular structural feature on the binding affinities follows directly from this approach. The formalism is extended to describing the effects of hybridizing small \modifier RNAs' to a target RNA molecule outside its ligand binding site. We illustrate the applicability of our approach by quantitatively describing the interaction of the mRNA stabilizing protein HuR with AU-rich elements [Meisner et al. (2004), Chem. Biochem. in press]. We discuss our model and recent experimental findings demonstrating the ffectivity of modifier RNAs in vitro in the context of the current research activities in the field of non-coding RNAs. We speculate that modifier RNAs might also exist in nature; if so, they present an additional regulatory layer for fine-tuning gene expression that could evolve rapidly, leaving no obvious traces in the genomic DNA sequences.
|
Page generated in 0.1333 seconds